ترغب بنشر مسار تعليمي؟ اضغط هنا

Charge dynamics of the Co-doped BaFe$_2$As$_2$

142   0   0.0 ( 0 )
 نشر من قبل Degiorgi
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a thorough optical investigation over a broad spectral range and as a function of temperature of the charge dynamics in Ba(Co$_x$Fe$_{1-x}$)$_2$As$_2$ compounds for Co-doping ranging between 0 and 18%. For the parent compound as well as for $x$=0.025 we observe the opening of a pseudogap, due to the spin-density-wave phase transition and inducing a reshuffling of spectral weight from low to high frequencies. For compounds with 0.051$le x le$ 0.11 we detect the superconducting gap, while at $x$=0.18 the material stays metallic at all temperatures. We describe the effective metallic contribution to the optical conductivity with two Drude terms, representing the combination of a coherent and incoherent component, and extract the respective scattering rates. We establish that the $dc$ transport properties in the normal phase are dominated by the coherent Drude term for 0$le x le$0.051 and by the incoherent one for 0.061$le x le$0.18, respectively. Finally through spectral weight arguments, we give clear-cut evidence for moderate electronic correlations for 0$le x le$0.061, which then crossover to values appropriate for a regime of weak interacting and nearly-free electron metals for $xge$0.11.



قيم البحث

اقرأ أيضاً

We report on a thorough optical investigation of BaFe$_2$As$_2$ over a broad spectral range and as a function of temperature, focusing our attention on its spin-density-wave (SDW) phase transition at $T_{SDW}=135$ K. While BaFe$_2$As$_2$ remains meta llic at all temperatures, we observe a depletion in the far infrared energy interval of the optical conductivity below $T_{SDW}$, ascribed to the formation of a pseudogap-like feature in the excitation spectrum. This is accompanied by the narrowing of the Drude term consistent with the $dc$ transport results and suggestive of suppression of scattering channels in the SDW state. About 20% of the spectral weight in the far infrared energy interval is affected by the SDW phase transition.
179 - D. Nakamura , Y. Imai , A. Maeda 2009
We investigated the complex conductivity spectrum of a Co-doped BaFe$_2$As$_2$ epitaxial thin film in the THz region. In the normal state, the complex conductivity shows a Drude-type frequency dependence, while in the superconducting state, the frequ ency dependence of the complex conductivity changes to that of a typical superconducting materials. We estimated the magnetic penetration depth at absolute zero to be 710 nm and the superconducting gap energy to be 2.8 meV, which is considered to be the superconducting gap opened at the electron-type Fermi surface near the M point. We succeeded in obtaining the low-energy elementary excitation of a Fe-based superconductor using the electromagnetic method without invoking the Kramers-Kronig transformation.
We studied the relationship between the charge doping and the correlation, and its effects on the spectral function of the BaFe$_2$As$_2$ compound in the framework of the density functional theory combined with the dynamical mean field theory (DFT+DM FT). The calculated mass enhancements showed that the electronic correlation varies systematically from weak to strong when moving from the heavily electron-doped regime to the heavily hole-doped one. Since the compound has a multi-orbital nature, the correlation is orbital-dependent and it increases as hole-doping increases. The Fe-3d$_{xy}$ (xy) orbital is much more correlated than the other orbitals, because it reaches its half-filled situation and has a narrower energy scale around the Fermi energy. Our findings can be consistently understood as the tendency of the heavily hole-doped BaFe$_2$As$_2$ compound to an orbital-selective Mott phase (OSMP). Moreover, the fact that the superconducting state of the heavily hole-doped BaFe$_2$As$_2$ is an extreme case of such a selective Mottness constrains the non-trivial role of the electronic correlation in iron-pnictide superconductors. In addition, the calculated spectral function shows a behavior that is compatible with experimental results reported for every charge-doped BaFe$_2$As$_2$ compound and clarifies the importance of the characterization of its physical effects on the material.
203 - Y. K. Kim , Hyungju Oh , Chul Kim 2010
We performed angle resolved photoelectron spectroscopy (ARPES) studies on mechanically detwinned BaFe2As2. We observe clear band dispersions and the shapes and characters of the Fermi surfaces are identified. Shapes of the two hole pockets around the {Gamma}-point are found to be consistent with the Fermi surface topology predicted in the orbital ordered states. Dirac-cone like band dispersions near the {Gamma}-point are clearly identified as theoretically predicted. At the X-point, split bands remain intact in spite of detwinning, barring twinning origin of the bands. The observed band dispersions are compared with calculated band structures. With a magnetic moment of 0.2 ?B per iron atom, there is a good agreement between the calculation and experiment.
We report high-resolution, bulk Compton scattering measurements unveiling the Fermi surface of an optimally-doped iron-arsenide superconductor, Ba(Fe$_{0.93}$Co$_{0.07}$)$_2$As$_2$. Our measurements are in agreement with first-principles calculations of the electronic structure, revealing both the $X$-centered electron pockets and the $Gamma$-centered hole pockets. Moreover, our data are consistent with the strong three-dimensionality of one of these sheets that has been predicted by electronic structure calculations at the local-density-approximation-minimum As position. Complementary calculations of the noninteracting susceptibility, $chi_0({bf q}, omega)$, suggest that the broad peak that develops due to interband Fermi-surface nesting, and which has motivated several theories of superconductivity in this class of material, survives the measured three dimensionality of the Fermi surface in this family.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا