ﻻ يوجد ملخص باللغة العربية
We studied the relationship between the charge doping and the correlation, and its effects on the spectral function of the BaFe$_2$As$_2$ compound in the framework of the density functional theory combined with the dynamical mean field theory (DFT+DMFT). The calculated mass enhancements showed that the electronic correlation varies systematically from weak to strong when moving from the heavily electron-doped regime to the heavily hole-doped one. Since the compound has a multi-orbital nature, the correlation is orbital-dependent and it increases as hole-doping increases. The Fe-3d$_{xy}$ (xy) orbital is much more correlated than the other orbitals, because it reaches its half-filled situation and has a narrower energy scale around the Fermi energy. Our findings can be consistently understood as the tendency of the heavily hole-doped BaFe$_2$As$_2$ compound to an orbital-selective Mott phase (OSMP). Moreover, the fact that the superconducting state of the heavily hole-doped BaFe$_2$As$_2$ is an extreme case of such a selective Mottness constrains the non-trivial role of the electronic correlation in iron-pnictide superconductors. In addition, the calculated spectral function shows a behavior that is compatible with experimental results reported for every charge-doped BaFe$_2$As$_2$ compound and clarifies the importance of the characterization of its physical effects on the material.
We report the physical properties and electronic structure calculations of a layered chromium oxypnictide, Sr$_2$Cr$_3$As$_2$O$_2$, which crystallizes in a Sr$_2$Mn$_3$As$_2$O$_2$-type structure containing both CrO$_2$ planes and Cr$_2$As$_2$ layers.
We studied the physical properties of two Kondo-lattice compounds, CeRu$_2$As$_2$ and CeIr$_2$As$_2$, by a combination of electric transport, magnetic and thermodynamic measurements. They are of ThCr$_2$Si$_2$-type and CaBe$_2$Ge$_2$-type crystalline
We present a method for producing high quality KCo2As2 crystals, stable in air and suitable for a variety of measurements. X-ray diffraction, magnetic susceptibility, electrical transport and heat capacity measurements confirm the high quality and an
We performed angle resolved photoelectron spectroscopy (ARPES) studies on mechanically detwinned BaFe2As2. We observe clear band dispersions and the shapes and characters of the Fermi surfaces are identified. Shapes of the two hole pockets around the
We report density functional calculations of the electronic structure and Fermi surface of the BaFe$_2$As$_2$ and LiFeAs phases including doping via the virtual crystal approximation. The results show that contrary to a rigid band picture, the densit