ﻻ يوجد ملخص باللغة العربية
We performed angle resolved photoelectron spectroscopy (ARPES) studies on mechanically detwinned BaFe2As2. We observe clear band dispersions and the shapes and characters of the Fermi surfaces are identified. Shapes of the two hole pockets around the {Gamma}-point are found to be consistent with the Fermi surface topology predicted in the orbital ordered states. Dirac-cone like band dispersions near the {Gamma}-point are clearly identified as theoretically predicted. At the X-point, split bands remain intact in spite of detwinning, barring twinning origin of the bands. The observed band dispersions are compared with calculated band structures. With a magnetic moment of 0.2 ?B per iron atom, there is a good agreement between the calculation and experiment.
We study the band structure of twinned and detwinned BaFe$_2$As$_2$ using angle-resolved photoemission spectroscopy (ARPES). The combination of measurements in the ordered and normal state along four high-symmetry momentum directions $Gamma$/Z--X/Y e
Understanding magnetic interactions in the parent compounds of high-temperature superconductors forms the basis for determining their role for the mechanism of superconductivity. For parent compounds of iron pnictide superconductors such as $A$Fe$_2$
We studied the relationship between the charge doping and the correlation, and its effects on the spectral function of the BaFe$_2$As$_2$ compound in the framework of the density functional theory combined with the dynamical mean field theory (DFT+DM
We have performed high-resolution angle-resolved photoemission spectroscopy on heavily electron-doped non-superconducting (SC) BaFe$_{1.7}$Co$_{0.3}$As$_2$. We find that the two hole Fermi surface pockets at the zone center observed in the hole-doped
We have performed neutron diffraction measurement on a single crystal of parent compound of iron-based superconductor, BaFe$_2$As$_2$ at 12~K. In order to investigate in-plane anisotropy of magnetic form factor in the antiferromagnetic phase, the det