ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic phase diagram of the S=1/2 triangular layered compound NaNiO2: a single crystal study

125   0   0.0 ( 0 )
 نشر من قبل Sophie De Brion
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sophie De Brion




اسأل ChatGPT حول البحث

Using magnetic torque measurement on a NaNiO2 single crystal, we have established the magnetic phase diagram of this triangular compound. It presents 5 different phases depending on the temperature (4 K - 300 K) and magnetic field (0 - 22 T) revealing several spin reorientations coupled to different magnetic anisotropies.



قيم البحث

اقرأ أيضاً

95 - L. Shen , O. Zaharko , J. O. Birk 2018
We explore the spin states in the quantum spin chain compound SrCo$_{2}$V$_{2}$O$_{8}$ up to 14.9 T and down to 50 mK, using single-crystal neutron diffraction. Upon cooling in zero-field, antiferromagnetic (AFM) order of Neel type develops at $T_mat hrm{{N}}$ $simeq$ 5.0 K. Applying an external magnetic field ($H$ $parallel$ $c$-axis) destabilizes the Neel order, leading to an order-disorder transition when applying a field between $T_mathrm{{N}}$ and $sim$ 1.5 K. Below 1.5 K, we observe a Neel to longitudinal spin density wave (LSDW) order transition at 3.9 T, and a LSDW to emergent AFM order transition at 7.0 T. Our results also reveal several unique signatures for the states of the spins that are not present in the isostructural counterpart BaCo$_{2}$V$_{2}$O$_{8}$.
We present the results of the magnetization and dielectric constant measurements on untwinned single crystal samples of the frustrated S=1/2 chain cuprate LiCu_2O_2. Novel magnetic phase transitions were observed. A spin flop transition of the spiral spin plane was observed for the field orientations H||a,b. The second magnetic transition was observed at H~15 T for all three principal field directions. This high field magnetic phase is discussed as a collinear spin-modulated phase which is expected for an S=1/2 nearest-neighbor ferromagnetic and next-nearest-neighbor antiferromagnetic chain system.
The trigonal compound EuSn2As2 was recently discovered to host Dirac surface states within the bulk band gap and orders antiferromagnetically below the Neel temperature TN = 24 K. Here the magnetic ground state of single-crystal EuSn2As2 and the evol ution of its properties versus temperature T and applied magnetic field H are reported. Included are zero-field single-crystal neutron-diffraction measurements versus T, magnetization M(H,T), magnetic susceptibility chi(H,T) = M(T)/H, heat capacity Cp(H,T), and electrical resistivity rho(H,T) measurements. The neutron-diffraction and chi(T) measurements both indicate a collinear A-type antiferromagnetic (AFM) structure below TN =23.5(2) K, where the Eu{2+} spins S = 7/2 in a triangular ab-plane layer (hexagonal unit cell) are aligned ferromagnetically in the ab plane whereas the spins in adjacent Eu planes along the c axis are aligned antiferromagnetically. The chi(H{ab},T) and chi(H{c},T) data together indicate a smooth crossover between the collinear AFM alignment and an unknown magnetic structure at H ~ 0.15 T. Dynamic spin fluctuations up to 60 K are evident in the chi(T), Cp(T) and rho(H,T) measurements, a temperature that is more than twice TN. The rho(H,T) of the compound does not reflect a contribution of the topological state, but rather is consistent with a low-carrier-density metal with strong magnetic scattering. The magnetic phase diagrams for both H||c and H||ab in the H-T plane are constructed from the TN(H), chi(H,T), Cp(H,T), and rho(H,T) data.
We have measured the specific heat of the S = 1/2 alternating Heisenberg antiferromagnetic chain compound pentafluorophenyl nitronyl nitroxide in magnetic fields using a single crystal and powder. A sharp peak due to field-induced magnetic ordering ( FIMO) is observed in both samples. The H-T phase boundary of the FIMO of the single crystal is symmetric with respect to the central field of the gapless field region HC1 < H < HC2, whereas it is distorted for the powder whose ordering temperatures are lower. An analysis employing calculations based on the finite temperature density matrix renormalization group indicates the possibility of novel incommensurate ordering due to frustration in the powder around the central field.
The compound CaV2O4 contains V^{+3} cations with spin S = 1 and has an orthorhombic structure at room temperature containing zigzag chains of V atoms running along the c-axis. We have grown single crystals of CaV2O4 and report crystallography, static magnetization, magnetic susceptibility chi, ac magnetic susceptibility, heat capacity Cp, and thermal expansion measurements in the temperature T range of 1.8-350 K on the single crystals and on polycrystalline samples. An orthorhombic to monoclinic structural distortion and a long-range antiferromagnetic (AF) transition were found at sample-dependent temperatures T_S approx 108-145 K and T_N approx 51-76 K, respectively. In two annealed single crystals, another transition was found at approx 200 K. In one of the crystals, this transition is mostly due to V2O3 impurity phase that grows coherently in the crystals during annealing. However, in the other crystal the origin of this transition at 200 K is unknown. The chi(T) shows a broad maximum at approx 300 K associated with short-range AF ordering and the anisotropy of chi above T_N is small. The anisotropic chi(T to 0) data below T_N show that the (average) easy axis of the AF magnetic structure is the b-axis. The Cp(T) data indicate strong short-range AF ordering above T_N, consistent with the chi(T) data. We fitted our chi(T) data near room temperature by a J1-J2 S = 1 Heisenberg chain model, where J1(J2) is the (next)-nearest-neighbor exchange interaction. We find J1 approx 230 K, and surprisingly, J2/J1 approx 0 (or J1/J2 approx 0). The interaction J_perp between these S = 1 chains leading to long-range AF ordering at T_N is estimated to be J_perp/J_1 gtrsim 0.04.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا