ترغب بنشر مسار تعليمي؟ اضغط هنا

Single Crystal Growth, Crystallography, Magnetic Susceptibility, Heat Capacity, and Thermal Expansion of the Antiferromagnetic S = 1 Chain Compound CaV2O4

600   0   0.0 ( 0 )
 نشر من قبل David C. Johnston
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The compound CaV2O4 contains V^{+3} cations with spin S = 1 and has an orthorhombic structure at room temperature containing zigzag chains of V atoms running along the c-axis. We have grown single crystals of CaV2O4 and report crystallography, static magnetization, magnetic susceptibility chi, ac magnetic susceptibility, heat capacity Cp, and thermal expansion measurements in the temperature T range of 1.8-350 K on the single crystals and on polycrystalline samples. An orthorhombic to monoclinic structural distortion and a long-range antiferromagnetic (AF) transition were found at sample-dependent temperatures T_S approx 108-145 K and T_N approx 51-76 K, respectively. In two annealed single crystals, another transition was found at approx 200 K. In one of the crystals, this transition is mostly due to V2O3 impurity phase that grows coherently in the crystals during annealing. However, in the other crystal the origin of this transition at 200 K is unknown. The chi(T) shows a broad maximum at approx 300 K associated with short-range AF ordering and the anisotropy of chi above T_N is small. The anisotropic chi(T to 0) data below T_N show that the (average) easy axis of the AF magnetic structure is the b-axis. The Cp(T) data indicate strong short-range AF ordering above T_N, consistent with the chi(T) data. We fitted our chi(T) data near room temperature by a J1-J2 S = 1 Heisenberg chain model, where J1(J2) is the (next)-nearest-neighbor exchange interaction. We find J1 approx 230 K, and surprisingly, J2/J1 approx 0 (or J1/J2 approx 0). The interaction J_perp between these S = 1 chains leading to long-range AF ordering at T_N is estimated to be J_perp/J_1 gtrsim 0.04.



قيم البحث

اقرأ أيضاً

196 - Yogesh Singh , R. W. McCallum , 2007
Static magnetic susceptibility chi, ac susceptibility chi_{ac} and specific heat C versus temperature T measurements on polycrystalline samples of In2VO5 and chi and C versus T measurements on the isostructural, nonmagnetic compound In2TiO5 are repor ted. A Curie-Wiess fit to the chi(T) data above 175 K for In2VO5 indicates ferromagnetic exchange between V^{4+} (S = 1/2) moments. Below 150 K the chi(T) data deviate from the Curie-Weiss behavior but there is no signature of any long range magnetic order down to 1.8 K. There is a cusp at 2.8 K in the zero field cooled (ZFC) chi(T) data measured in a magnetic field of 100 Oe and the ZFC and field cooled (FC) data show a bifurcation below this temperature. The frequency dependence of the chi_{ac}(T) data indicate that below 3 K the system is in a spin-glass state. The difference Delta C between the heat capacity of In2VO5 and In2TiO5 shows a broad anomaly peaked at 130 K. The entropy upto 300 K is more than what is expected for S = 1/2 moments. The anomaly in Delta C and the extra entropy suggests that there may be a structural change below 130 K in In2VO5.
The field-induced transition in one-dimensional S=1 Heisenberg antiferromagnet with single-ion anisotropy in the presence of a transverse magnetic field is obtained on the basis of the Schwinger boson mean-field theory. The behaviors of the specific heat and susceptibility as functions of temperature as well as the applied transverse field are explored, which are found to be different from the results obtained under a longitudinal field. The anomalies of the specific heat at low temperatures, which might be an indicative of a field-induced transition from a Luttinger liquid phase to an ordered phase, are explicitly uncovered under the transverse field. A schematic phase diagram is proposed. The theoretical results are compared with experimental observations.
The phase transition in the compound LiVGe2O6 has been proposed as a unique example of a spin-Peierls transition in an S=1 antiferromagnetic chain. We report neutron and x-ray diffraction measurements of LiVGe2O6 above and below the phase transition at T=24 K. No evidence is seen for any structural distortion associated with the transition. The neutron results indicate that the low temperature state is antiferromagnetic, driven by ferromagnetic interchain couplings.
119 - Yinghao Zhu , Si Wu , Bao Tu 2020
Magnetization measurements and time-of-flight neutron powder-diffraction studies on the high-temperature (300--980 K) magnetism and crystal structure (321--1200 K) of a pulverized YCrO$_3$ single crystal have been performed. Temperature-dependent inv erse magnetic susceptibility coincides with a piecewise linear function with five regimes, with which we fit a Curie-Weiss law and calculate the frustration factor $f$. The fit results indicate a formation of magnetic polarons between 300 and 540 K and a very strong magnetic frustration. By including one factor $eta$ that represents the degree of spin interactions into the Brillouin function, we can fit well the applied-magnetic-field dependence of magnetization. No structural phase transition was observed from 321 to 1200 K. The average thermal expansions of lattice configurations (emph{a}, emph{b}, emph{c}, and emph{V}) obey well the Gr$ddot{textrm{u}}$neisen approximations with an anomaly appearing around 900 K, implying an isosymmetric structural phase transition, and display an anisotropic character along the crystallographic emph{a}, emph{b}, and emph{c} axes with the incompressibility $K^a_0 > K^c_0 > K^b_0$. It is interesting to find that at 321 K, the local distortion size $Delta$(O2) $approx$ 1.96$Delta$(O1) $approx$ 4.32$Delta$(Y) $approx$ 293.89$Delta$(Cr). Based on the refined Y-O and Cr-O bond lengths, we deduce the local distortion environments and modes of Y, Cr, O1, and O2 ions. Especially, the Y and O2 ions display obvious atomic displacement and charge subduction, which may shed light on the dielectric property of the YCrO$_3$ compound. Additionally, by comparing Kramers Mn$^{3+}$ with non-Kramers Cr$^{3+}$ ions, it is noted that being a Kramers or non-Kramers ion can strongly affect the local distortion size, whereas, it may not be able to change the detailed distortion mode.
Unlike most quantum systems which rapidly become incoherent as temperature is raised, strong correlations persist at elevated temperatures in $S=1/2$ dimer magnets, as revealed by the unusual asymmetric lineshape of their excitations at finite temper atures. Here we quantitatively explore and parameterize the strongly correlated magnetic excitations at finite temperatures using the high resolution inelastic neutron scattering on the model compound BaCu$_2$V$_2$O$_8$ which we show to be an alternating antiferromagnetic-ferromagnetic spin$-1/2$ chain. Comparison to state of the art computational techniques shows excellent agreement over a wide temperature range. Our findings hence demonstrate the possibility to quantitatively predict coherent behavior at elevated temperatures in quantum magnets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا