ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic Field versus Temperature Phase Diagram of the Spin-1/2 Alternating Chain Compound F5PNN

195   0   0.0 ( 0 )
 نشر من قبل Yasuo Yoshida
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have measured the specific heat of the S = 1/2 alternating Heisenberg antiferromagnetic chain compound pentafluorophenyl nitronyl nitroxide in magnetic fields using a single crystal and powder. A sharp peak due to field-induced magnetic ordering (FIMO) is observed in both samples. The H-T phase boundary of the FIMO of the single crystal is symmetric with respect to the central field of the gapless field region HC1 < H < HC2, whereas it is distorted for the powder whose ordering temperatures are lower. An analysis employing calculations based on the finite temperature density matrix renormalization group indicates the possibility of novel incommensurate ordering due to frustration in the powder around the central field.



قيم البحث

اقرأ أيضاً

By using the infinite time-evolving block decimation, we study quantum fidelity and entanglement entropy in the spin-1/2 Heisenberg alternating chain under an external magnetic field. The effects of the magnetic field on the fidelity are investigated , and its relation with the quantum phase transition (QPT) is analyzed. The phase diagram of the model is given accordingly, which supports the Haldane phase, the singlet-dimer phase, the Luttinger liquid phase and the paramagnetic phase. The scaling of entanglement entropy in the gapless Luttinger liquid phase is studied, and the central charge c = 1 is obtained. We also study the relationship between the quantum coherence, string order parameter and QPTs. Results obtained from these quantum information observations are consistent with the previous reports.
95 - L. Shen , O. Zaharko , J. O. Birk 2018
We explore the spin states in the quantum spin chain compound SrCo$_{2}$V$_{2}$O$_{8}$ up to 14.9 T and down to 50 mK, using single-crystal neutron diffraction. Upon cooling in zero-field, antiferromagnetic (AFM) order of Neel type develops at $T_mat hrm{{N}}$ $simeq$ 5.0 K. Applying an external magnetic field ($H$ $parallel$ $c$-axis) destabilizes the Neel order, leading to an order-disorder transition when applying a field between $T_mathrm{{N}}$ and $sim$ 1.5 K. Below 1.5 K, we observe a Neel to longitudinal spin density wave (LSDW) order transition at 3.9 T, and a LSDW to emergent AFM order transition at 7.0 T. Our results also reveal several unique signatures for the states of the spins that are not present in the isostructural counterpart BaCo$_{2}$V$_{2}$O$_{8}$.
We present the results of the magnetization and dielectric constant measurements on untwinned single crystal samples of the frustrated S=1/2 chain cuprate LiCu_2O_2. Novel magnetic phase transitions were observed. A spin flop transition of the spiral spin plane was observed for the field orientations H||a,b. The second magnetic transition was observed at H~15 T for all three principal field directions. This high field magnetic phase is discussed as a collinear spin-modulated phase which is expected for an S=1/2 nearest-neighbor ferromagnetic and next-nearest-neighbor antiferromagnetic chain system.
We study the phase diagram of a one-dimensional version of the Kitaev spin-1/2 model with an extra ``$Gamma$-term, using analytical, density matrix renormalization group and exact diagonalization methods. Two intriguing phases are found. In the gaple ss phase, although the exact symmetry group of the system is discrete, the low energy theory is described by an emergent SU(2)$_1$ Wess-Zumino-Witten (WZW) model. On the other hand, the spin-spin correlation functions exhibit SU(2) breaking prefactors, even though the exponents and the logarithmic corrections are consistent with the SU(2)$_1$ predictions. A modified nonabelian bosonization formula is proposed to capture such exotic emergent ``partial SU(2) symmetry. In the ordered phase, there is numerical evidence for an $O_hrightarrow D_4$ spontaneous symmetry breaking.
The key to unraveling intriguing phenomena observed in various Kitaev materials lies in understanding the interplay of Kitaev ($K$) interaction and a symmetric off-diagonal $Gamma$ interaction. To provide insight into the challenging problems, we stu dy the quantum phase diagram of a bond-alternating spin-$1/2$ $g_x$-$g_y$ $K$-$Gamma$ chain by density-matrix renormalization group method where $g_x$ and $g_y$ are the bond strengths of the odd and even bonds, respectively. The phase diagram is dominated by even-Haldane ($g_x > g_y$) and odd-Haldane ($g_x < g_y$) phases where the former is topologically trivial while the latter is a symmetry-protected topological phase. Near the antiferromagnetic Kitaev limit, there are two gapped $A_x$ and $A_y$ phases characterized by distinct nonlocal string correlators. In contrast, the isotropic ferromagnetic (FM) Kitaev point serves as a multicritical point where two topological phase transitions meet. The remaining part of the phase diagram contains three symmetry-breaking magnetic phases. One is a six-fold degenerate FM$_{U_6}$ phase where all the spins are parallel to one of the $pm hat{x}$, $pm hat{y}$, and $pm hat{z}$ axes in a six-site spin rotated basis, while the other two have more complex spin structures with all the three spin components being finite. Existence of a rank-2 spin-nematic ordering in the latter is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا