ﻻ يوجد ملخص باللغة العربية
A set of localized, non-Abelian anyons - such as vortices in a p_x + i p_y superconductor or quasiholes in certain quantum Hall states - gives rise to a macroscopic degeneracy. Such a degeneracy is split in the presence of interactions between the anyons. Here we show that in two spatial dimensions this splitting selects a unique collective state as ground state of the interacting many-body system. This collective state can be a novel gapped quantum liquid nucleated inside the original parent liquid (of which the anyons are excitations). This physics is of relevance for any quantum Hall plateau realizing a non-Abelian quantum Hall state when moving off the center of the plateau.
We introduce a Hamiltonian coupling Majorana fermion degrees of freedom to a quantum dimer model. We argue that, in three dimensions, this model has deconfined quasiparticles supporting Majorana zero modes obeying nontrivial statistics. We introduce
We establish the existence of a chiral spin liquid (CSL) as the exact ground state of the Kitaev model on a decorated honeycomb lattice, which is obtained by replacing each site in the familiar honeycomb lattice with a triangle. The CSL state spontan
We present an exactly solvable model for synthetic anyons carrying non-Abelian flux. The model corresponds to a two-dimensional electron gas in a magnetic field with a specific spin interaction term, which allows only fully aligned spin states in the
Quantum mechanical systems, whose degrees of freedom are so-called su(2)_k anyons, form a bridge between ordinary SU(2) spin systems and systems of interacting non-Abelian anyons. Such a connection can be made for arbitrary spin-S systems, and we exp
Quantum spin liquids (QSLs) are fluid-like states of quantum spins where its long-range ordered state is destroyed by quantum fluctuations. The ground state of QSL and its exotic phenomena, which have been extensively discussed for decades, have yet