ترغب بنشر مسار تعليمي؟ اضغط هنا

Collective States of Interacting Anyons, Edge States, and the Nucleation of Topological Liquids

205   0   0.0 ( 0 )
 نشر من قبل Simon Trebst
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum mechanical systems, whose degrees of freedom are so-called su(2)_k anyons, form a bridge between ordinary SU(2) spin systems and systems of interacting non-Abelian anyons. Such a connection can be made for arbitrary spin-S systems, and we explicitly discuss spin-1/2 and spin-1 systems. Anyonic spin-1/2 chains exhibit a topological protection mechanism that stabilizes their gapless ground states and which vanishes only in the limit (k to infinity) of the ordinary spin-1/2 Heisenberg chain. For anyonic spin-1 chains we find their phase diagrams to closely mirror the one of the biquadratic SU(2) spin-1 chain. Our results describe at the same time nucleation of different 2D topological quantum fluids within a `parent non-Abelian quantum Hall state, arising from a macroscopic occupation of localized, interacting anyons. The edge states between the `nucleated and the `parent liquids are neutral, and correspond precisely to the gapless modes of the anyonic chains.



قيم البحث

اقرأ أيضاً

We study effectively one-dimensional systems that emerge at the edge of a two-dimensional topologically ordered state, or at the boundary between two topologically ordered states. We argue that anyons of the bulk are associated with emergent symmetri es of the edge, which play a crucial role in the structure of its phase diagram. Using this symmetry principle, transitions between distinct gapped phases at the boundaries of Abelian states can be understood in terms of symmetry breaking transitions or transitions between symmetry protected topological phases. Yet more exotic phenomena occur when the bulk hosts non-Abelian anyons. To demonstrate these principles, we explore the phase diagrams of the edges of a single and a double layer of the toric code, as well as those of domain walls in a single and double-layer Kitaev spin liquid (KSL). In the case of the KSL, we find that the presence of a non-Abelian anyon in the bulk enforces Kramers-Wannier self-duality as a symmetry of the effective boundary theory. These examples illustrate a number of surprising phenomena, such as spontaneous duality-breaking, two-sector phase transitions, and unfreezing of marginal operators at a transition between different gapless phases.
We investigate theoretically the quantum phase transition (QPT) between the one-channel Kondo (1CK) and two-channel Kondo (2CK) fixed points in a quantum dot coupled to helical edge states of interacting 2D topological insulators (2DTI) with Luttinge r parameter $0<K<1$. The model has been studied in Ref. 21, and was mapped onto an anisotropic two-channel Kondo model via bosonization. For K<1, the strong coupling 2CK fixed point was argued to be stable for infinitesimally weak tunnelings between dot and the 2DTI based on a simple scaling dimensional analysis[21]. We re-examine this model beyond the bare scaling dimension analysis via a 1-loop renormalization group (RG) approach combined with bosonization and re-fermionization techniques near weak-coupling and strong-coupling (2CK) fixed points. We find for K -->1 that the 2CK fixed point can be unstable towards the 1CK fixed point and the system may undergo a quantum phase transition between 1CK and 2CK fixed points. The QPT in our model comes as a result of the combined Kondo and the helical Luttinger physics in 2DTI, and it serves as the first example of the 1CK-2CK QPT that is accessible by the controlled RG approach. We extract quantum critical and crossover behaviors from various thermodynamical quantities near the transition. Our results are robust against particle-hole asymmetry for 1/2<K<1.
In addition to novel surface states, topological insulators can also exhibit robust gapless states at crystalline defects. Step edges constitute a class of common defects on the surface of crystals. In this work we establish the topological nature of one-dimensional (1D) bound states localized at step edges of the [001] surface of a topological crystalline insulator (TCI) Pb$_{0.7}$Sn$_{0.3}$Se, both theoretically and experimentally. We show that the topological stability of the step edge states arises from an emergent particle-hole symmetry of the surface low-energy physics, and demonstrate the experimental signatures of the particle-hole symmetry breaking. We also reveal the effects of an external magnetic field on the 1D bound states. Our work suggests the possibility of similar topological step edge modes in other topological materials with a rocks-salt structure.
Collective states of interacting non-Abelian anyons have recently been studied mostly in the context of certain fractional quantum Hall states, such as the Moore-Read state proposed to describe the physics of the quantum Hall plateau at filling fract ion v = 5/2. In this manuscript, we further expand this line of research and present non-unitary generalizations of interacting anyon models. In particular, we introduce the notion of Yang-Lee anyons, discuss their relation to the so-called `Gaffnian quantum Hall wave function, and describe an elementary model for their interactions. A one-dimensional version of this model -- a non-unitary generalization of the original golden chain model -- can be fully understood in terms of an exact algebraic solution and numerical diagonalization. We discuss the gapless theories of these chain models for general su(2)_k anyonic theories and their Galois conjugates. We further introduce and solve a one-dimensional version of the Levin-Wen model for non-unitary Yang-Lee anyons.
Recently, it has been found that there exist symmetry-protected topological phases of fermions, which have no realizations in non-interacting fermionic systems or bosonic models. We study the edge states of such an intrinsically interacting fermionic SPT phase in two spatial dimensions, protected by $mathbb{Z}_4timesmathbb{Z}_2^T$ symmetry. We model the edge Hilbert space by replacing the internal $mathbb{Z}_4$ symmetry with a spatial translation symmetry, and design an exactly solvable Hamiltonian for the edge model. We show that at low-energy the edge can be described by a two-component Luttinger liquid, with nontrivial symmetry transformations that can only be realized in strongly interacting systems. We further demonstrate the symmetry-protected gaplessness under various perturbations, and the bulk-edge correspondence in the theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا