ﻻ يوجد ملخص باللغة العربية
We present an exactly solvable model for synthetic anyons carrying non-Abelian flux. The model corresponds to a two-dimensional electron gas in a magnetic field with a specific spin interaction term, which allows only fully aligned spin states in the ground state; the ground state subspace is thus two-fold degenerate. This system is perturbed with identical solenoids carrying a non-Abelian gauge potential. We explore dynamics of the ground state as these solenoids are adiabatically braided and show they behave as anyons with a non-Abelian flux. Such a system represents a middle ground between the ordinary Abelian anyons and the fully non-Abelian anyons.
We establish the existence of a chiral spin liquid (CSL) as the exact ground state of the Kitaev model on a decorated honeycomb lattice, which is obtained by replacing each site in the familiar honeycomb lattice with a triangle. The CSL state spontan
We address the question whether observables of an exactly solvable model of electrons coupled to (optical) phonons relax into large time stationary state values and investigate if the asymptotic expectation values can be computed using a stationary d
We have proposed an exactly solvable quantum spin-3/2 model on a square lattice. Its ground state is a quantum spin liquid with a half integer spin per unit cell. The fermionic excitations are gapless with a linear dispersion, while the topological v
We introduce in this paper an exact solvable BCS-Hubbard model in arbitrary dimensions. The model describes a p-wave BCS superconductor with equal spin pairing moving on a bipartite (cubic, square etc.) lattice with on site Hubbard interaction $U$. W
We study entanglement in the Hatsugai-Kohmoto model, which exhibits a continuous interaction-driven Mott transition. By virtue of the all-to-all nature of its center-of-mass conserving interactions, the model lacks dynamical spectral weight transfer,