ﻻ يوجد ملخص باللغة العربية
The description of complex configuration is a difficult issue. We present a powerful technique for cluster identification and characterization. The scheme is designed to treat with and analyze the experimental and/or simulation data from various methods. Main steps are as follows. We first divide the space using face or volume elements from discrete points. Then, combine the elements with the same and/or similar properties to construct clusters with special physical characterizations. In the algorithm, we adopt administrative structure of hierarchy-tree for spatial bodies such as points, lines, faces, blocks, and clusters. Two fast search algorithms with the complexity are realized. The establishing of the hierarchy-tree and the fast searching of spatial bodies are general, which are independent of spatial dimensions. Therefore, it is easy to extend the skill to other fields. As a verification and validation, we treated with and analyzed some two-dimensional and three-dimensional random data.
Physical spin configurations corresponding to topological excitations expected to be present in the XY limit of a purely quantum spin 1/2 Heisenberg ferromagnet, are probed on a two dimensional square lattice. Quantum vortices (anti-vortices) are con
Physical spin configurations corresponding to topological excitations, expected to be present in the XY limit of a quantum spin 1/2 Heisenberg anti-ferromagnet, are probed on a two dimensional square lattice . Quantum vortices (anti-vortices) are con
A central result that arose in applying information theory to the stochastic thermodynamics of nonlinear dynamical systems is the Information-Processing Second Law (IPSL): the physical entropy of the universe can decrease if compensated by the Shanno
We consider the smallest eigenvalues of perturbed Hermitian operators with zero modes, either topological or system specific. To leading order for small generic perturbation we show that the corresponding eigenvalues broaden to a Gaussian random matr
The standard map, paradigmatic conservative system in the $(x,p)$ phase space, has been recently shown to exhibit interesting statistical behaviors directly related to the value of the standard map parameter $K$. A detailed numerical description is a