ﻻ يوجد ملخص باللغة العربية
Physical spin configurations corresponding to topological excitations expected to be present in the XY limit of a purely quantum spin 1/2 Heisenberg ferromagnet, are probed on a two dimensional square lattice. Quantum vortices (anti-vortices) are constructed in terms of coherent spin field components as limiting case of meronic (anti-meronic) configurations. The crucial role of the associated Wess-Zumino term is highlighted in our procedure. It is shown that this term can identify a large class of vortices (anti-vortices). In particular the excitations having odd topological charges form this class and also exihibit a self-similar pattern regarding the internal charge distribution. This manifestation of different behaviour of the odd and the even topological sectors is very prominent in the strongly quantum regime but fades away as we go to higher spins. Our formalism is distinctly different from the conventional approach for the construction of quantum vortices (anti-vortices).
Physical spin configurations corresponding to topological excitations, expected to be present in the XY limit of a quantum spin 1/2 Heisenberg anti-ferromagnet, are probed on a two dimensional square lattice . Quantum vortices (anti-vortices) are con
The pure-quantum self-consistent harmonic approximation, a semiclassical method based on the path-integral formulation of quantum statistical mechanics, is applied to the study of the thermodynamic behaviour of the quantum Heisenberg antiferromagnet
We numerically investigate elementary excitations of the Heisenberg alternating-spin chains with two kinds of spins 1 and 1/2 antiferromagnetically coupled to each other. Employing a recently developed efficient Monte Carlo technique as well as an ex
The description of complex configuration is a difficult issue. We present a powerful technique for cluster identification and characterization. The scheme is designed to treat with and analyze the experimental and/or simulation data from various meth
A study of the d-dimensional classical Heisenberg ferromagnetic model in the presence of a magnetic field is performed within the two-time Green functions framework in classical statistical physics. We extend the well known quantum Callen method to d