ﻻ يوجد ملخص باللغة العربية
We consider the smallest eigenvalues of perturbed Hermitian operators with zero modes, either topological or system specific. To leading order for small generic perturbation we show that the corresponding eigenvalues broaden to a Gaussian random matrix ensemble of size $ utimes u$, where $ u$ is the number of zero modes. This observation unifies and extends a number of results within chiral random matrix theory and effective field theory and clarifies under which conditions they apply. The scaling of the former zero modes with the volume differs from the eigenvalues in the bulk, which we propose as an indicator to identify them in experiments. These results hold for all ten symmetric spaces in the Altland-Zirnbauer classification and build on two facts. Firstly, the broadened zero modes decouple from the bulk eigenvalues and secondly, the mixing from eigenstates of the perturbation form a Central Limit Theorem argument for matrices.
Hermitian operators with exact zero modes subject to non-Hermitian perturbations are considered. Specific focus is on the average distribution of the initial zero modes of the Hermitian operators. The broadening of these zero modes is found to follow
We prove that quantum information encoded in some topological excitations, including certain Majorana zero modes, is protected in closed systems for a time scale exponentially long in system parameters. This protection holds even at infinite temperat
Using a family of modified Weibull distributions, encompassing both sub-exponentials and super-exponentials, to parameterize the marginal distributions of asset returns and their natural multivariate generalizations, we give exact formulas for the ta
A pair of Majorana zero modes (MZMs) constitutes a nonlocal qubit whose entropy is $log 2$. Upon strongly coupling one of the constituent MZMs to a reservoir with a continuous density of states, a universal entropy change of $frac{1}{2}log 2$ is expe
I explicitly construct a strong zero mode in the XYZ chain or, equivalently, Majorana wires coupled via a four-fermion interaction. The strong zero mode is an operator that pairs states in different symmetry sectors, resulting in identical spectra up