ﻻ يوجد ملخص باللغة العربية
Coalescence overgrowth of pattern-grown GaN nanocolumns (NC) on c-plane sapphire substrate with metal organic chemical vapour deposition is demonstrated. The subsequent coalescence overgrowth opens a possibility for dislocation reduction due to the lateral strain relaxation in columnar geometry. We present further growth optimization and innovative characterization of MOCVD layers, overgrown on the columnar structure with varying diameter of colums. Nanoimprint lithography was applied to open circular holes of 250, 300, 450, 600 nm in diameter on the SiO2 layer, deposited on the GaN layer on c-plane sapphire template.
V-pit-defects in GaN-based light-emitting diodes induced by dislocations are considered beneficial to electroluminescence because they relax the strain in InGaN quantum wells and also enhance the hole lateral injection through sidewall of V-pits. In
Single GaN nanowires formed spontaneously on a given substrate represent nanoscopic single crystals free of any extended defects. However, due to the high area density of thus formed GaN nanowire ensembles, individual nanowires coalesce with others i
Magnetic anisotropy, spin wave (SW) excitation and exchange stiffness constant of amorphous FeTaC ($d$ = 20-200 nm) films were studied as a function of thickness using micro-strip ferromagnetic resonance (MS-FMR) technique. The MS-FMR spectra for in-
In recent years the physics of two-dimensional semiconductors was revived by the discovery of the class of transition metal dichalcogenides. In these systems excitons dominate the optical response in the visible range and open many perspectives for n
In metal organic vapor phase epitaxy of GaN, the growth mode is sensitive to reactor temperature. In this study, V-pit-shaped GaN has been grown on normal c-plane cone-patterned sapphire substrate by decreasing the growth temperature of high-temperat