ﻻ يوجد ملخص باللغة العربية
Single GaN nanowires formed spontaneously on a given substrate represent nanoscopic single crystals free of any extended defects. However, due to the high area density of thus formed GaN nanowire ensembles, individual nanowires coalesce with others in their immediate vicinity. This coalescence process may introduce strain and structural defects, foiling the idea of defect-free material due to the nanowire geometry. To investigate the consequences of this process, a quantitative measure of the coalescence of nanowire ensembles is required. We derive objective criteria to determine the coalescence degree of GaN nanowire ensembles. These criteria are based on the area-perimeter relationship of the cross-sectional shapes observed, and in particular on their circularity. Employing these criteria, we distinguish single nanowires from coalesced aggregates in an ensemble, determine the diameter distribution of both, and finally analyze the coalescence degree of nanowire ensembles with increasing fill factor.
We investigate the structural and optical properties of spontaneously formed GaN nanowires with different degrees of coalescence. This quantity is determined by an analysis of the cross-sectional area and perimeter of the nanowires obtained by plan-v
In the experimental electroluminescence (EL) spectra of light-emitting diodes (LEDs) based on N-polar (In,Ga)N/GaN nanowires (NWs), we observed a double peak structure. The relative intensity of the two peaks evolves in a peculiar way with injected c
We grow a tiled structure of insulating two dimensional LaAlO3/SrTiO3 interfaces composed of alternating one and three LaAlO3 unit cells. The boundary between two tiles is conducting. At low temperatures this conductance exhibits quantized steps as a
In this work we report new silicon and germanium tubular nanostructures with no corresponding stable carbon analogues. The electronic and mechanical properties of these new tubes were investigated through ab initio methods. Our results show that the
Tellurium can form nanowires of helical atomic chains. Given their unique one-dimensional van der Waals structure, these nanowires are expected to show remarkably different physical and electronic properties than bulk tellurium. Here we show that few