ﻻ يوجد ملخص باللغة العربية
In metal organic vapor phase epitaxy of GaN, the growth mode is sensitive to reactor temperature. In this study, V-pit-shaped GaN has been grown on normal c-plane cone-patterned sapphire substrate by decreasing the growth temperature of high-temperature-GaN to around 950 oC, which leads to the 3-dimensional growth of GaN. The so-called WM well describes the shape that the bottom of GaN V-pit is just right over the top of sapphire cone, and the regular arrangement of V-pits follows the patterns of sapphire substrate strictly. Two types of semipolar facets (1101) and (1122) expose on sidewalls of V-pits. Furthermore, by raising the growth temperature to 1000 oC, the growth mode of GaN can be transferred to 2-demonsional growth. Accordingly, the size of V-pits becomes smaller and the area of c-plane GaN becomes larger, while the total thickness of GaN keeps almost unchanged during this process. As long as the 2-demonsional growth lasts, the V-pits will disappear and only flat c-plane GaN remains. This means the area ratio of c-plane and semipolar plane GaN can be controlled by the duration time of 2-demonsional growth.
A new type of (Ga,Mn)As microstructures with laterally confined electronic and magnetic properties has been realized by growing (Ga,Mn)As films on [1-10]-oriented ridge structures with (113)A sidewalls and (001) top layers prepared on GaAs(001) subst
V-pit-defects in GaN-based light-emitting diodes induced by dislocations are considered beneficial to electroluminescence because they relax the strain in InGaN quantum wells and also enhance the hole lateral injection through sidewall of V-pits. In
Most III-nitride semiconductors are grown on non-lattice-matched substrates like sapphire or silicon due to the extreme difficulty of obtaining a native GaN substrate. We show that several layered transition-metal dichalcogenides are closely lattice
In this work, we report on the epitaxial growth of multiferroic YMnO3 on GaN. Both materials are hexagonal with a nominal lattice mismatch of 4%, yet x-ray diffraction reveals an unexpected 30 degree rotation between the unit cells of YMnO3 and GaN t
Single crystal metal films on insulating substrates are attractive for microelectronics and other applications, but they are difficult to achieve on macroscopic length scales. The conventional approach to obtaining such films is epitaxial growth at h