ﻻ يوجد ملخص باللغة العربية
We prove the existence of the intersection local time for two independent, d -dimensional fractional Brownian motions with the same Hurst parameter H. Assume d greater or equal to 2, then the intersection local time exists if and only if Hd<2.
Let $B^{alpha_i}$ be an $(N_i,d)$-fractional Brownian motion with Hurst index ${alpha_i}$ ($i=1,2$), and let $B^{alpha_1}$ and $B^{alpha_2}$ be independent. We prove that, if $frac{N_1}{alpha_1}+frac{N_2}{alpha_2}>d$, then the intersection local time
In this paper we prove exact forms of large deviations for local times and intersection local times of fractional Brownian motions and Riemann-Liouville processes. We also show that a fractional Brownian motion and the related Riemann-Liouville proce
In this note we consider generalized diffusion equations in which the diffusivity coefficient is not necessarily constant in time, but instead it solves a nonlinear fractional differential equation involving fractional Riemann-Liouville time-derivati
We study the Crank-Nicolson scheme for stochastic differential equations (SDEs) driven by multidimensional fractional Brownian motion $(B^{1}, dots, B^{m})$ with Hurst parameter $H in (frac 12,1)$. It is well-known that for ordinary differential equa
We study a natural continuous time version of excited random walks, introduced by Norris, Rogers and Williams about twenty years ago. We obtain a necessary and sufficient condition for recurrence and for positive speed. This is analogous to results for excited (or cookie) random walks.