ﻻ يوجد ملخص باللغة العربية
Strongly enhanced third-harmonic generation (THG) by the topological localization of an edge mode in a Su-Schrieffer-Heeger (SSH) chain of silicon photonic crystal nanocavities is demonstrated. The edge mode of the nanocavity chain not only naturally inherits resonant properties of the single nanocavity, but also exhibits the topological feature with mode robustness extending well beyond individual nanocavity. By engineering the SSH nanocavities with alternating strong and weak coupling strengths on a silicon slab, we observe the edge mode formation that entails a THG signal with three orders of magnitude enhancement compared with that in a trivial SSH structure. Our results indicate that the photonic crystal nanocavity chain could provide a promising on-chip platform for topology-driven nonlinear photonics.
We demonstrate tunable frequency-converted light mediated by a chi-(2) nonlinear photonic crystal nanocavity. The wavelength-scale InP-based cavity supports two closely-spaced localized modes near 1550 nm which are resonantly excited by a 130 fs lase
Nano-resonator integrated with two-dimensional materials (e.g. transition metal dichalcogenides) have recently emerged as a promising nano-optoelectronic platform. Here we demonstrate resonatorenhanced second-harmonic generation (SHG) in tungsten dis
We study nonlinear effects in two-dimensional photonic metasurfaces supporting topologically-protected helical edge states at the nanoscale. We observe strong third-harmonic generation mediated by optical nonlinearities boosted by multipolar Mie reso
We demonstrate enhanced second harmonic generation in a gallium phosphide photonic crystal waveguide with a measured external conversion efficiency of 5$times10^{-7}$/W. Our results are promising for frequency conversion of on-chip integrated emitter
Interest in photonic crystal nanocavities is fueled by advances in device performance, particularly in the development of low-threshold laser sources. Effective electrical control of high performance photonic crystal lasers has thus far remained elus