ﻻ يوجد ملخص باللغة العربية
Data series similarity search is a core operation for several data series analysis applications across many different domains. However, the state-of-the-art techniques fail to deliver the time performance required for interactive exploration, or analysis of large data series collections. In this work, we propose MESSI, the first data series index designed for in-memory operation on modern hardware. Our index takes advantage of the modern hardware parallelization opportunities (i.e., SIMD instructions, multi-core and multi-socket architectures), in order to accelerate both index construction and similarity search processing times. Moreover, it benefits from a careful design in the setup and coordination of the parallel workers and data structures, so that it maximizes its performance for in-memory operations. Our experiments with synthetic and real datasets demonstrate that overall MESSI is up to 4x faster at index construction, and up to 11x faster at query answering than the state-of-the-art parallel approach. MESSI is the first to answer exact similarity search queries on 100GB datasets in _50msec (30-75msec across diverse datasets), which enables real-time, interactive data exploration on very large data series collections.
Data series similarity search is a core operation for several data series analysis applications across many different domains. Nevertheless, even state-of-the-art techniques cannot provide the time performance required for large data series collectio
In emerging applications such as blockchains and collaborative data analytics, there are strong demands for data immutability, multi-version accesses, and tamper-evident controls. This leads to three new index structures for immutable data, namely Me
In this paper we describe algorithms for computing the BWT and for building (compressed) indexes in external memory. The innovative feature of our algorithms is that they are lightweight in the sense that, for an input of size $n$, they use only ${n}
Spatial Online Analytical Processing System involves the non-categorical attribute information also whereas standard Online Analytical Processing System deals with only categorical attributes. Providing spatial information to the data warehouse (DW);
Structural indexing is an approach to accelerating query evaluation, whereby data objects are partitioned and indexed reflecting the precise expressive power of a given query language. Each partition block of the index holds exactly those objects tha