ﻻ يوجد ملخص باللغة العربية
We calculate the relativistic entrainment matrix Y_ik at zero temperature for nucleon-hyperon mixture composed of neutrons, protons, Lambda and Sigma^- hyperons, as well as of electrons and muons. This matrix is analogous to the entrainment matrix (also termed mass-density matrix or Andreev-Bashkin matrix) of non-relativistic theory. It is an important ingredient for modelling the pulsations of massive neutron stars with superfluid nucleon-hyperon cores. The calculation is done in the frame of the relativistic Landau Fermi-liquid theory generalized to the case of superfluid mixtures; the matrix Y_ik is expressed through the Landau parameters of nucleon-hyperon matter. The results are illustrated with a particular example of the sigma-omega-rho mean-field model with scalar self-interactions. Using this model we calculate the matrix Y_ik and the Landau parameters. We also analyze stability of the ground state of nucleon-hyperon matter with respect to small perturbations.
We calculate the important quantity of superfluid hydrodynamics, the relativistic entrainment matrix for a nucleon-hyperon mixture at arbitrary temperature. In the nonrelativistic limit this matrix is also termed the Andreev-Bashkin or mass-density m
Observations of massive ($M approx 2.0~M_odot$) neutron stars (NSs), PSRs J1614-2230 and J0348+0432, rule out most of the models of nucleon-hyperon matter employed in NS simulations. Here we construct three possible models of nucleon-hyperon matter c
The supernova remnant Cassiopeia A contains the youngest known neutron star which is also the first one for which real time cooling has ever been observed. In order to explain the rapid cooling of this neutron star, we first present the fundamental p
The year 2019 marks the 30th anniversary of BES and the 100th anniversary of Rutherfords discovery of the proton. In spite of the fact that when BES operations started the proton was already 70 years old and the strange hyperons were all over 25, BES
Pulsars are rotating neutron stars that are renowned for their timing precision, although glitches can interrupt the regular timing behavior when these stars are young. Glitches are thought to be caused by interactions between normal and superfluid m