ﻻ يوجد ملخص باللغة العربية
I prove that a centre manifold approach to creating finite difference models will consistently model linear dynamics as the grid spacing becomes small. Using such tools of dynamical systems theory gives new assurances about the quality of finite difference models under nonlinear and other perturbations on grids with finite spacing. For example, the advection-diffusion equation is found to be stably modelled for all advection speeds and all grid spacing. The theorems establish an extremely good form for the artificial internal boundary conditions that need to be introduced to apply centre manifold theory. When numerically solving nonlinear partial differential equations, this approach can be used to derive systematically finite difference models which automatically have excellent characteristics. Their good performance for finite grid spacing implies that fewer grid points may be used and consequently there will be less difficulties with stiff rapidly decaying modes in continuum problems.
Modern dynamical systems theory has previously had little to say about finite difference and finite element approximations of partial differential equations (Archilla, 1998). However, recently I have shown one way that centre manifold theory may be u
Discrete approximations to the equation begin{equation*} L_{cont}u = u^{(4)} + D(x) u^{(3)} + A(x) u^{(2)} + (A(x)+H(x)) u^{(1)} + B(x) u = f, ; xin[0,1] end{equation*} are considered. This is an extension of the Sturm-Liouville case $D(x)equiv H(x
This work concerns the continuum basis and numerical formulation for deformable materials with viscous dissipative mechanisms. We derive a viscohyperelastic modeling framework based on fundamental thermomechanical principles. Since most large deforma
In this paper, we consider Maxwells equations in linear dispersive media described by a single-pole Lorentz model for electronic polarization. We study two classes of commonly used spatial discretizations: finite difference methods (FD) with arbitrar
We present a hybridization technique for summation-by-parts finite difference methods with weak enforcement of interface and boundary conditions for second order, linear elliptic partial differential equations. The method is based on techniques from