ﻻ يوجد ملخص باللغة العربية
For a set of mulitple sequences, their patterns,Longest Common Subsequences (LCS) and Shortest Common Supersequences (SCS) represent different aspects of these sequences profile, and they can all be used for biological sequence comparisons and analysis. Revealing the relationship between the patterns and LCS,SCS might provide us with a deeper view of the patterns of biological sequences, in turn leading to better understanding of them. However, There is no careful examinaton about the relationship between patterns, LCS and SCS. In this paper, we have analyzed their relation, and given some lemmas. Based on their relations, a set of algorithms called the PALS (PAtterns by Lcs and Scs) algorithms are propsoed to discover patterns in a set of biological sequences. These algorithms first generate the results for LCS and SCS of sequences by heuristic, and consequently derive patterns from these results. Experiments show that the PALS algorithms perform well (both in efficiency and in accuracy) on a variety of sequences. The PALS approach also provides us with a solution for transforming between the heuristic results of SCS and LCS.
In this work, we consider a variant of the classical Longest Common Subsequence problem called Doubly-Constrained Longest Common Subsequence (DC-LCS). Given two strings s1 and s2 over an alphabet A, a set C_s of strings, and a function Co from A to N
We investigate the behavior of optimal alignment paths for homologous (related) and independent random sequences. An alignment between two finite sequences is optimal if it corresponds to the longest common subsequence (LCS). We prove the existence o
We consider the expected length of the longest common subsequence between two random words of lengths $n$ and $(1-varepsilon)kn$ over $k$-symbol alphabet. It is well-known that this quantity is asymptotic to $gamma_{k,varepsilon} n$ for some constant
Let $X=(X_i)_{ige 1}$ and $Y=(Y_i)_{ige 1}$ be two sequences of independent and identically distributed (iid) random variables taking their values, uniformly, in a common totally ordered finite alphabet. Let LCI$_n$ be the length of the longest commo
Finding the common subsequences of $L$ multiple strings has many applications in the area of bioinformatics, computational linguistics, and information retrieval. A well-known result states that finding a Longest Common Subsequence (LCS) for $L$ stri