ﻻ يوجد ملخص باللغة العربية
Let $X=(X_i)_{ige 1}$ and $Y=(Y_i)_{ige 1}$ be two sequences of independent and identically distributed (iid) random variables taking their values, uniformly, in a common totally ordered finite alphabet. Let LCI$_n$ be the length of the longest common and (weakly) increasing subsequence of $X_1cdots X_n$ and $Y_1cdots Y_n$. As $n$ grows without bound, and when properly centered and normalized, LCI$_n$ is shown to converge, in distribution, towards a Brownian functional that we identify.
We consider the expected length of the longest common subsequence between two random words of lengths $n$ and $(1-varepsilon)kn$ over $k$-symbol alphabet. It is well-known that this quantity is asymptotic to $gamma_{k,varepsilon} n$ for some constant
Let $W^{(n)}$ be the $n$-letter word obtained by repeating a fixed word $W$, and let $R_n$ be a random $n$-letter word over the same alphabet. We show several results about the length of the longest common subsequence (LCS) between $W^{(n)}$ and $R_n
We investigate the behavior of optimal alignment paths for homologous (related) and independent random sequences. An alignment between two finite sequences is optimal if it corresponds to the longest common subsequence (LCS). We prove the existence o
Chen proposed a conjecture on the log-concavity of the generating function for the symmetric group with respect to the length of longest increasing subsequences of permutations. Motivated by Chens log-concavity conjecture, B{o}na, Lackner and Sagan f
For a partial word $w$ the longest common compatible prefix of two positions $i,j$, denoted $lccp(i,j)$, is the largest $k$ such that $w[i,i+k-1]uparrow w[j,j+k-1]$, where $uparrow$ is the compatibility relation of partial words (it is not an equival