ﻻ يوجد ملخص باللغة العربية
Finding the common subsequences of $L$ multiple strings has many applications in the area of bioinformatics, computational linguistics, and information retrieval. A well-known result states that finding a Longest Common Subsequence (LCS) for $L$ strings is NP-hard, e.g., the computational complexity is exponential in $L$. In this paper, we develop a randomized algorithm, referred to as {em Random-MCS}, for finding a random instance of Maximal Common Subsequence ($MCS$) of multiple strings. A common subsequence is {em maximal} if inserting any character into the subsequence no longer yields a common subsequence. A special case of MCS is LCS where the length is the longest. We show the complexity of our algorithm is linear in $L$, and therefore is suitable for large $L$. Furthermore, we study the occurrence probability for a single instance of MCS and demonstrate via both theoretical and experimental studies that the longest subsequence from multiple runs of {em Random-MCS} often yields a solution to $LCS$.
Given $n$ colored balls, we want to detect if more than $lfloor n/2rfloor$ of them have the same color, and if so find one ball with such majority color. We are only allowed to choose two balls and compare their colors, and the goal is to minimize th
We present and analyze a simple, two-step algorithm to approximate the optimal solution of the sparse PCA problem. Our approach first solves a L1 penalized version of the NP-hard sparse PCA optimization problem and then uses a randomized rounding str
We propose a weighted common subgraph (WCS) matching algorithm to find the most similar subgraphs in two labeled weighted graphs. WCS matching, as a natural generalization of the equal-sized graph matching or subgraph matching, finds wide application
The problem of finding a common refinement of a set of rooted trees with common leaf set $L$ appears naturally in mathematical phylogenetics whenever poorly resolved information on the same taxa from different sources is to be reconciled. This consti
Given an undirected, weighted graph, the minimum spanning tree (MST) is a tree that connects all of the vertices of the graph with minimum sum of edge weights. In real world applications, network designers often seek to quickly find a replacement edg