ﻻ يوجد ملخص باللغة العربية
We discuss a basis set developed to calculate perturbation coefficients in an expansion of the general N-body problem. This basis has two advantages. First, the basis is complete order-by-order for the perturbation series. Second, the number of independent basis tensors spanning the space for a given order does not scale with N, the number of particles, despite the generality of the problem. At first order, the number of basis tensors is 23 for all N although the problem at first order scales as N^6. The perturbation series is expanded in inverse powers of the spatial dimension. This results in a maximally symmetric configuration at lowest order which has a point group isomorphic with the symmetric group, S_N. The resulting perturbation series is order-by-order invariant under the N! operations of the S_N point group which is responsible for the slower than exponential growth of the basis. In this paper, we perform the first test of this formalism including the completeness of the basis through first order by comparing to an exactly solvable fully-interacting problem of N particles with a two-body harmonic interaction potential.
This paper contains a rigorous mathematical example of direct derivation of the system of Euler hydrodynamic equations from Hamiltonian equations for N point particle system as N tends to infinity. Direct means that the following standard tools are n
We propose a convenient orthogonal basis of the Hilbert space for the Izergin-Korepin model (or the quantum spin chain associated with the $A^{(2)}_{2}$ algebra). It is shown that the monodromy-matrix elements acting on the basis take relatively simp
We propose a Ginzburg-Landau model for the expansion of a dodecahedral viral capsid during infection or maturation. The capsid is described as a dodecahedron whose faces, meant to model rigid capsomers, are free to move independent of each other, and
We construct explicit bound state wave functions and bound state energies for certain $N$--body Hamiltonians in one dimension that are analogous to $N$--electron Hamiltonians for (three-dimensional) atoms and monatomic ions.
We give a simple direct proof of the Jamiolkowski criterion to check whether a linear map between matrix algebras is completely positive or not. This proof is more accesible for physicists than others found in the literature and provides a systematic