ترغب بنشر مسار تعليمي؟ اضغط هنا

Scheme for proving the bosonic commutation relation using single-photon interference

266   0   0.0 ( 0 )
 نشر من قبل Myungshik Kim
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an experiment to directly prove the commutation relation between bosonic annihilation and creation operators, based on the recent experimental success in single-photon subtraction and addition. We devise a single-photon interferometer to realize coherent superpositions of two sequences of photon addition and subtraction. Depending on the interference outcome, the commutation relation is directly proven or a highly nonclassical state is produced. Experimental imperfections are assessed to show that the realization of the scheme is highly feasible.



قيم البحث

اقرأ أيضاً

We show that it is possible to generate a novel single-photon fringe pattern by using two spatially separated identical bi-photon sources. The fringes are similar to the ones observed in a Michelson interferometer and possess certain remarkable prope rties with potential applications. A striking feature of the fringes is that although the pattern is obtained by detecting only one photon of each photon pair, the fringes shift due to a change in the optical path traversed by the undetected photon. The fringe shift is characterized by a combination of wavelengths of both photons, which implies that the wavelength of a photon can be measured without detecting it. Furthermore, the visibility of the fringes diminishes as the correlation between the transverse momenta of twin photons decreases: visibility is unity for maximum momentum correlation and zero for no momentum correlation. We also show that the momentum correlation between the two photons of a pair can be determined from the single-photon interference pattern. We thus for the first time propose a method of measuring a two-photon correlation without coincidence or heralded detection.
We present the experimental realization of a scheme, based on single-photon interference, for implementing superpositions of distinct quantum operations. Its application to a thermal light field (a well-categorized classical entity) illustrates quant um superposition from a new standpoint and provides a direct and quantitative verification of the bosonic commutation relation between creation and annihilation operators. By shifting the focus towards operator superpositions, this result opens interesting alternative perspectives for manipulating quantum states.
This paper presents a proof-of-principle scheme for the protective measurement of a single photon. In this scheme, the photon is looped arbitrarily many times through an optical stage that implements a weak measurement of a polarization observable fo llowed by a strong measurement protecting the state. The ability of this scheme to realize a large number of such interaction-protection steps means that the uncertainty in the measurement result can be drastically reduced while maintaining a sufficient probability for the photon to survive the measurement.
A promising result from optical quantum metrology is the ability to achieve sub-shot-noise performance in transmission or absorption measurements. This is due to the significantly lower uncertainty in light intensity of quantum beams with respect to their classical counterparts. In this work, we simulate the outcome of an experiment that uses a multiplexed single-photon source based on pair generation by continuous spontaneous parametric down conversion (SPDC) followed by a time multiplexing set-up with a binary temporal division strategy, considering several types of experimental losses. With such source, the sub-Poissonian statistics of the output signal is the key for achieving sub-shot-noise performance. We compare the numerical results with two paradigmatic limits: the shot-noise limit (achieved using coherent sources) and the quantum limit (obtained with an ideal photon-number Fock state as the input source). We also investigate conditions in which threshold detectors can be used, and the effect of input light fluctuations on the measurement error. Results show that sub-shot-noise performance can be achieved, even without using number-resolving detectors, with improvement factors that range from 1.5 to 2. This technique would allow measurements of optical absorption of a sample with reasonable uncertainty using ultra-low light intensity and minimum disruption of biological or other fragile specimens.
The intense research activity on Twin-Field (TF) quantum key distribution (QKD) is motivated by the fact that two users can establish a secret key by relying on single-photon interference in an untrusted node. Thanks to this feature, variants of the protocol have been proven to beat the point-to-point private capacity of a lossy quantum channel. Here we generalize the main idea of the TF-QKD protocol introduced by Curty et al. to the multipartite scenario, by devising a conference key agreement (CKA) where the users simultaneously distill a secret conference key through single-photon interference. The new CKA is better suited to high-loss scenarios than previous multipartite QKD schemes and it employs for the first time a W-class state as its entanglement resource. We prove the protocols security in the finite-key regime and under general attacks. We also compare its performance with the iterative use of bipartite QKD protocols and show that our truly multipartite scheme can be advantageous, depending on the loss and on the state preparation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا