ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental demonstration of bosonic commutation relation via superpositions of quantum operations on thermal light fields

92   0   0.0 ( 0 )
 نشر من قبل Marco Bellini
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the experimental realization of a scheme, based on single-photon interference, for implementing superpositions of distinct quantum operations. Its application to a thermal light field (a well-categorized classical entity) illustrates quantum superposition from a new standpoint and provides a direct and quantitative verification of the bosonic commutation relation between creation and annihilation operators. By shifting the focus towards operator superpositions, this result opens interesting alternative perspectives for manipulating quantum states.



قيم البحث

اقرأ أيضاً

Engineering quantum operations is one of the main abilities we need for developing quantum technologies and designing new fundamental tests. Here we propose a scheme for realising a controlled operation acting on a travelling quantum field, whose fun ctioning is determined by an input qubit. This study introduces new concepts and methods in the interface of continuous- and discrete-variable quantum optical systems.
Taming decoherence is essential in realizing quantum computation and quantum communication. Here we experimentally demonstrate that decoherence due to amplitude damping can be suppressed by exploiting quantum measurement reversal in which a weak meas urement and the reversing measurement are introduced before and after the decoherence channel, respectively. We have also investigated the trade-off relation between the degree of decoherence suppression and the channel transmittance.
265 - M. S. Kim , H. Jeong , A. Zavatta 2009
We propose an experiment to directly prove the commutation relation between bosonic annihilation and creation operators, based on the recent experimental success in single-photon subtraction and addition. We devise a single-photon interferometer to r ealize coherent superpositions of two sequences of photon addition and subtraction. Depending on the interference outcome, the commutation relation is directly proven or a highly nonclassical state is produced. Experimental imperfections are assessed to show that the realization of the scheme is highly feasible.
Slow light based on the effect of electromagnetically induced transparency is of great interest due to its applications in low-light-level nonlinear optics and quantum information manipulation. The previous experiments all dealt with the single-compo nent slow light. Here we report the experimental demonstration of two-component or spinor slow light using a double tripod atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by six light fields. The oscillation due to the interaction between the two components was observed. Based on the stored light, our data showed that the double tripod scheme behaves like the two outcomes of an interferometer enabling precision measurements of frequency detuning. We experimentally demonstrated a possible application of the double tripod scheme as quantum memory/rotator for the two-color qubit. Our study also suggests that the spinor slow light is a better method than a widely-used scheme in the nonlinear frequency conversion.
We propose two experimental schemes for producing coherent-state superpositions which approximate different nonclassical states conditionally in traveling optical fields. Although these setups are constructed of a small number of linear optical eleme nts and homodyne measurements, they can be used to generate various photon number superpositions in which the number of constituent states can be higher than the number of measurements in the schemes. We determine numerically the parameters to achieve maximal fidelity of the preparation for a large variety of nonclassical states, such as amplitude squeezed states, squeezed number states, binomial states and various photon number superpositions. The proposed setups can generate these states with high fidelities and with success probabilities that can be promising for practical applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا