ترغب بنشر مسار تعليمي؟ اضغط هنا

Scheme for the protective measurement of a single photon using a tunable quantum Zeno effect

63   0   0.0 ( 0 )
 نشر من قبل Maximilian Schlosshauer
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents a proof-of-principle scheme for the protective measurement of a single photon. In this scheme, the photon is looped arbitrarily many times through an optical stage that implements a weak measurement of a polarization observable followed by a strong measurement protecting the state. The ability of this scheme to realize a large number of such interaction-protection steps means that the uncertainty in the measurement result can be drastically reduced while maintaining a sufficient probability for the photon to survive the measurement.



قيم البحث

اقرأ أيضاً

A promising result from optical quantum metrology is the ability to achieve sub-shot-noise performance in transmission or absorption measurements. This is due to the significantly lower uncertainty in light intensity of quantum beams with respect to their classical counterparts. In this work, we simulate the outcome of an experiment that uses a multiplexed single-photon source based on pair generation by continuous spontaneous parametric down conversion (SPDC) followed by a time multiplexing set-up with a binary temporal division strategy, considering several types of experimental losses. With such source, the sub-Poissonian statistics of the output signal is the key for achieving sub-shot-noise performance. We compare the numerical results with two paradigmatic limits: the shot-noise limit (achieved using coherent sources) and the quantum limit (obtained with an ideal photon-number Fock state as the input source). We also investigate conditions in which threshold detectors can be used, and the effect of input light fluctuations on the measurement error. Results show that sub-shot-noise performance can be achieved, even without using number-resolving detectors, with improvement factors that range from 1.5 to 2. This technique would allow measurements of optical absorption of a sample with reasonable uncertainty using ultra-low light intensity and minimum disruption of biological or other fragile specimens.
107 - Lan Zhou , S. Yang , Yu-xi Liu 2010
Using a dynamical quantum Zeno effect, we propose a general approach to control the coupling between a two-level system (TLS) and its surroundings, by modulating the energy level spacing of the TLS with a high frequency signal. We show that the TLS-- surroundings interaction can be turned on or off when the ratio between the amplitude and the frequency of the modulating field is adjusted to be a zero of a Bessel function. The quantum Zeno effect of the TLS can also be observed by the vanishing of the photon reflection at these zeros. Based on these results, we propose a quantum switch to control the transport of a single photon in a 1D waveguide. Our analytical results agree well with numerical results using Floquet theory.
Projective measurements are an essential element of quantum mechanics. In most cases, they cause an irreversible change of the quantum system on which they act. However, measurements can also be used to stabilize quantum states from decay processes, which is known as the quantum Zeno effect (QZE). Here, we demonstrate this effect for the case of a superposition state of a nuclear spin qubit, using an ancilla to perform the measurement. As a result, the quantum state of the qubit is protected against dephasing without relying on an ensemble nature of NMR experiments. We also propose a scheme to protect an arbitrary state by using QZE.
The quantum Zeno effect, i.e. the inhibition of coherent quantum dynamics by projective measurements is one of the most intriguing predictions of quantum mechanics. Here we experimentally demonstrate the quantum Zeno effect by inhibiting the microwav e driven coherent spin dynamics between two ground state spin levels of the nitrogen vacancy center in diamond nano-crystals. Our experiments are supported by a detailed analysis of the population dynamics via a semi-classical model.
The quantum Zeno effect (QZE) is the phenomenon where the unitary evolution of a quantum state is suppressed e.g. due to frequent measurements. Here, we investigate the use of the QZE in a class of communication complexity problems (CCPs). Quantum en tanglement is known to solve certain CCPs beyond classical constraints. However, recent developments have yielded CCPs where super-classical results can be obtained using only communication of a single d-level quantum state (qudit) as a resource. In the class of CCPs considered here, we show quantum reduction of complexity in three ways: using i) entanglement and the QZE, ii) single qudit and the QZE, iii) single qudit. The final protocol is motivated by experimental feasibility, and we have performed a proof of concept experimental demonstration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا