ﻻ يوجد ملخص باللغة العربية
We report a preliminary experimental study of EIT and stored light in the high optical depth regime. In particular, we characterize two ways to mitigate radiation trapping, a decoherence mechanism at high atomic density: nitrogen as buffer gas, and a long, narrow cell geometry. Initial results show the promise of both approaches in minimizing radiation trapping, but also reveal problems such as optical pumping into trapped end-states. We also observe distortion in EIT lineshapes at high optical depth, a result of interference from four-wave mixing. Experimental results are in good qualitative agreement with theoretical predictions.
We present a preliminary experimental study of the dependence on optical depth of slow and stored light pulses in Rb vapor. In particular, we characterize the efficiency of slow and stored light as a function of Rb density; pulse duration, delay and
We demonstrate a single-photon stored-light interferometer, where a photon is stored in a laser-cooled atomic ensemble in the form of a Rydberg polariton with a spatial extent of $10 times1times1mu m^3$. The photon is subject to a Ramsey sequence, i.
We study experimentally the effect of diffusion of Rb atoms on Electromagnetically Induced Transparency (EIT) in a buffer gas vapor cell. In particular, we find that diffusion of atomic coherence in-and-out of the laser beam plays a crucial role in d
We present theoretical results of a low-loss all-optical switch based on electromagnetically induced transparency and the classical Zeno effect in a microdisk resonator. We show that a control beam can modify the atomic absorption of the evanescent f
Detecting light is fundamental to all optical experiments and applications. At the single photon level, the quantised nature of light requires specialised detectors, which typically saturate for more than one photon, rendering the measurement of brig