ﻻ يوجد ملخص باللغة العربية
We demonstrate a single-photon stored-light interferometer, where a photon is stored in a laser-cooled atomic ensemble in the form of a Rydberg polariton with a spatial extent of $10 times1times1mu m^3$. The photon is subject to a Ramsey sequence, i.e. `split into a superposition of two paths. After a delay of up to 450 ns, the two paths are recombined to give an output dependent on their relative phase. The superposition time of 450 ns is equivalent to a free-space propagation distance of 135 m. We show that the interferometer fringes are sensitive to external fields, and suggest that stored-light interferometry could be useful for localized sensing applications.
The light-pulse atom interferometry method is reviewed. Applications of the method to inertial navigation and tests of the Equivalence Principle are discussed.
We report the cooling of an atomic ensemble with light, where each atom scatters only a single photon on average. This is a general method that does not require a cycling transition and can be applied to atoms or molecules which are magnetically trap
We experimentally simulate in a photonic setting non-Hermitian (NH) metals characterized by the topological properties of their nodal band structures. Implementing nonunitary time evolution in reciprocal space followed by interferometric measurements
We report an experimental demonstration of single-photon switching in laser-cooled $^{87}$Rb atoms. A resonant probe pulse with an energy per unit area of one photon per $lambda^2/2pi$ propagates through the optically thick atoms. Its energy transmit
We provide a unified theoretical approach to the quantum dynamics of absorption of single photons and subsequent excitonic energy transfer in photosynthetic light-harvesting complexes. Our analysis combines a continuous mode <n>-photon quantum optica