ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-Photon Stored-Light Interferometry

64   0   0.0 ( 0 )
 نشر من قبل Oliver Hughes
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate a single-photon stored-light interferometer, where a photon is stored in a laser-cooled atomic ensemble in the form of a Rydberg polariton with a spatial extent of $10 times1times1mu m^3$. The photon is subject to a Ramsey sequence, i.e. `split into a superposition of two paths. After a delay of up to 450 ns, the two paths are recombined to give an output dependent on their relative phase. The superposition time of 450 ns is equivalent to a free-space propagation distance of 135 m. We show that the interferometer fringes are sensitive to external fields, and suggest that stored-light interferometry could be useful for localized sensing applications.



قيم البحث

اقرأ أيضاً

The light-pulse atom interferometry method is reviewed. Applications of the method to inertial navigation and tests of the Equivalence Principle are discussed.
We report the cooling of an atomic ensemble with light, where each atom scatters only a single photon on average. This is a general method that does not require a cycling transition and can be applied to atoms or molecules which are magnetically trap ped. We discuss the application of this new approach to the cooling of hydrogenic atoms for the purpose of precision spectroscopy and fundamental tests.
We experimentally simulate in a photonic setting non-Hermitian (NH) metals characterized by the topological properties of their nodal band structures. Implementing nonunitary time evolution in reciprocal space followed by interferometric measurements , we probe the complex eigenenergies of the corresponding NH Bloch Hamiltonians, and study in detail the topology of their exceptional lines (ELs), the NH counterpart of nodal lines in Hermitian systems. We focus on two distinct types of NH metals: two-dimensional systems with symmetry-protected ELs, and three-dimensional systems possessing symmetry-independent topological ELs in the form of knots. While both types feature open Fermi surfaces, we experimentally observe their distinctions by analyzing the impact of symmetry-breaking perturbations on the topology of ELs.
We report an experimental demonstration of single-photon switching in laser-cooled $^{87}$Rb atoms. A resonant probe pulse with an energy per unit area of one photon per $lambda^2/2pi$ propagates through the optically thick atoms. Its energy transmit tance is greater than 63% or loss is less than $e^{-1}$ due to the effect of electromagnetically induced transparency. In the presence of a switching pulse with an energy per unit area of 1.4 photons per $lambda^2/2pi$, the energy transmittance of the same probe pulse becomes less than 37% or $e^{-1}$. This substantial reduction of the probe transmittance caused by single switching photons has potential applications in single-photon-level nonlinear optics and the manipulation of quantum information.
We provide a unified theoretical approach to the quantum dynamics of absorption of single photons and subsequent excitonic energy transfer in photosynthetic light-harvesting complexes. Our analysis combines a continuous mode <n>-photon quantum optica l master equation for the chromophoric system with the hierarchy of equations of motion describing excitonic dynamics in presence of non-Markovian coupling to vibrations of the chromophores and surrounding protein. We apply the approach to simulation of absorption of single-photon coherent states by pigment-protein complexes containing between one and seven chromophores, and compare with results obtained by excitation using a thermal radiation field. We show that the values of excitation probability obtained under single-photon absorption conditions can be consistently related to bulk absorption cross-sections. Analysis of the timescale and efficiency of single-photon absorption by light-harvesting systems within this full quantum description of pigment-protein dynamics coupled to a quantum radiation field reveals a non-trivial dependence of the excitation probability and the excited state dynamics induced by exciton-phonon coupling during and subsequent to the pulse, on the bandwidth of the incident photon pulse. For bandwidths equal to the spectral bandwidth of Chlorophyll a, our results yield an estimation of an average time of ~0.09 s for a single chlorophyll chromophore to absorb the energy equivalent of one (single-polarization) photon under irradiation by single-photon states at the intensity of sunlight.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا