ﻻ يوجد ملخص باللغة العربية
In this paper, based on the contributions of Tucker (1983) and Seb{H{o}} (1992), we generalize the concept of a sequential coloring of a graph to a framework in which the algorithm may use a coloring rule-base obtained from suitable forcing structures. In this regard, we introduce the {it weak} and {it strong sequential defining numbers} for such colorings and as the main results, after proving some basic properties, we show that these two parameters are intrinsically different and their spectra are nontrivial. Also, we consider the natural problems related to the complexity of computing such parameters and we show that in a variety of cases these problems are ${bf NP}$-complete. We conjecture that this result does not depend on the rule-base for all nontrivial cases.
For nonnegative integers $k, d_1, ldots, d_k$, a graph is $(d_1, ldots, d_k)$-colorable if its vertex set can be partitioned into $k$ parts so that the $i$th part induces a graph with maximum degree at most $d_i$ for all $iin{1, ldots, k}$. A class $
We confirm the equitable $Delta$-coloring conjecture for interval graphs and establish the monotonicity of equitable colorability for them. We further obtain results on equitable colorability about square (or Cartesian) and cross (or direct) products of graphs.
The star chromatic index of a multigraph $G$, denoted $chi_{st}(G)$, is the minimum number of colors needed to properly color the edges of $G$ such that no path or cycle of length four is bicolored. We survey the results of determining the star chrom
We exhibit an explicit list of nine graphs such that a graph drawn in the Klein bottle is 5-colorable if and only if it has no subgraph isomorphic to a member of the list.
For a given graph $G$, the least integer $kgeq 2$ such that for every Abelian group $mathcal{G}$ of order $k$ there exists a proper edge labeling $f:E(G)rightarrow mathcal{G}$ so that $sum_{xin N(u)}f(xu) eq sum_{xin N(v)}f(xv)$ for each edge $uvin E