ﻻ يوجد ملخص باللغة العربية
The star chromatic index of a multigraph $G$, denoted $chi_{st}(G)$, is the minimum number of colors needed to properly color the edges of $G$ such that no path or cycle of length four is bicolored. We survey the results of determining the star chromatic index, present the interesting proofs and techniques, and collect many open problems and conjectures.
Let $G$ be a simple graph with maximum degree $Delta(G)$. A subgraph $H$ of $G$ is overfull if $|E(H)|>Delta(G)lfloor |V(H)|/2 rfloor$. Chetwynd and Hilton in 1985 conjectured that a graph $G$ with $Delta(G)>|V(G)|/3$ has chromatic index $Delta(G)$ i
A strong edge-coloring of a graph $G$ is an edge-coloring such that any two edges on a path of length three receive distinct colors. We denote the strong chromatic index by $chi_{s}(G)$ which is the minimum number of colors that allow a strong edge-c
We exhibit an explicit list of nine graphs such that a graph drawn in the Klein bottle is 5-colorable if and only if it has no subgraph isomorphic to a member of the list.
For a given graph $G$, the least integer $kgeq 2$ such that for every Abelian group $mathcal{G}$ of order $k$ there exists a proper edge labeling $f:E(G)rightarrow mathcal{G}$ so that $sum_{xin N(u)}f(xu) eq sum_{xin N(v)}f(xv)$ for each edge $uvin E
Motivated by the Erdos-Faber Lovasz conjecture (EFL) for hypergraphs, we explore relationships between several conjectures on the edge coloring of linear hypergraphs. In particular, we are able to increase the class of hypergraphs for which EFL is true.