ﻻ يوجد ملخص باللغة العربية
For nonnegative integers $k, d_1, ldots, d_k$, a graph is $(d_1, ldots, d_k)$-colorable if its vertex set can be partitioned into $k$ parts so that the $i$th part induces a graph with maximum degree at most $d_i$ for all $iin{1, ldots, k}$. A class $mathcal C$ of graphs is {it balanced $k$-partitionable} and {it unbalanced $k$-partitionable} if there exists a nonnegative integer $D$ such that all graphs in $mathcal C$ are $(D, ldots, D)$-colorable and $(0, ldots, 0, D)$-colorable, respectively, where the tuple has length $k$. A set $X$ of cycles is a {it cycle obstruction set} of a class $mathcal C$ of planar graphs if every planar graph containing none of the cycles in $X$ as a subgraph belongs to $mathcal C$. This paper characterizes all cycle obstruction sets of planar graphs to be balanced $k$-partitionable and unbalanced $k$-partitionable for all $k$; namely, we identify all inclusion-wise minimal cycle obstruction sets for all $k$.
The textit{$k$-weak-dynamic number} of a graph $G$ is the smallest number of colors we need to color the vertices of $G$ in such a way that each vertex $v$ of degree $d(v)$ sees at least $rm{min}{k,d(v)}$ colors on its neighborhood. We use reducible
DP-coloring is a generalization of list coloring, which was introduced by Dvov{r}{a}k and Postle [J. Combin. Theory Ser. B 129 (2018) 38--54]. Zhang [Inform. Process. Lett. 113 (9) (2013) 354--356] showed that every planar graph with neither adjacent
In this paper, based on the contributions of Tucker (1983) and Seb{H{o}} (1992), we generalize the concept of a sequential coloring of a graph to a framework in which the algorithm may use a coloring rule-base obtained from suitable forcing structure
A conflict-free k-coloring of a graph assigns one of k different colors to some of the vertices such that, for every vertex v, there is a color that is assigned to exactly one vertex among v and vs neighbors. Such colorings have applications in wirel
A $k$-improper edge coloring of a graph $G$ is a mapping $alpha:E(G)longrightarrow mathbb{N}$ such that at most $k$ edges of $G$ with a common endpoint have the same color. An improper edge coloring of a graph $G$ is called an improper interval edge