ننا ناقشنا تشويهات الكم الخاصة بالألجبرا والبوينكار الذي يحتوي على أربعة أبعاد. في حالة الألجبرا البوينكار، تم إظهار أن أغلب الr-matrices الكلاسيكية من تصنيف س. زاكرزفسكي يتعلقون بالتشويهات المثلثة من النوع الأبلياني والأردني. وتم إعطاء جزء من التشويهات المتعلقة بr-matrices من تصنيف زاكرزفسكي بشكل واضح.
We discussed quantum deformations of D=4 Lorentz and Poincare algebras. In the case of Poincare algebra it is shown that almost all classical r-matrices of S. Zakrzewski classification correspond to twisted deformations of Abelian and Jordanian types. A part of twists corresponding to the r-matrices of Zakrzewski classification are given in explicit form.
We discussed twisted quantum deformations of D=4 Lorentz and Poincare algebras. In the case of Poincare algebra it is shown that almost all classical r-matrices of S.Zakrzewski classification can be presented as a sum of subordinated r-matrices of Ab
We discuss quantum deformations of Jordanian type for Lie superalgebras. These deformations are described by twisting functions with support from Borel subalgebras and they are multiparameter in the general case. The total twists are presented in exp
We describe the possible noncommutative deformations of complex projective three-space by exhibiting the Calabi--Yau algebras that serve as their homogeneous coordinate rings. We prove that the space parametrizing such deformations has exactly six ir
Quantum field theory allows more general symmetries than groups and Lie algebras. For instance quantum groups, that is Hopf algebras, have been familiar to theoretical physicists for a while now. Nowdays many examples of symmetries of categorical fla
The non-relativistic hydrogen atom enjoys an accidental $SO(4)$ symmetry, that enlarges the rotational $SO(3)$ symmetry, by extending the angular momentum algebra with the Runge-Lenz vector. In the relativistic hydrogen atom the accidental symmetry i