ﻻ يوجد ملخص باللغة العربية
Quantum field theory allows more general symmetries than groups and Lie algebras. For instance quantum groups, that is Hopf algebras, have been familiar to theoretical physicists for a while now. Nowdays many examples of symmetries of categorical flavor -- categorical groups, groupoids, Lie algebroids and their higher analogues -- appear in physically motivated constructions and faciliate constructions of geometrically sound models and quantization of field theories. Here we consider two flavours of categorified symmetries: one coming from noncommutative algebraic geometry where varieties themselves are replaced by suitable categories of sheaves; another in which the gauge groups are categorified to higher groupoids. Together with their gauge groups, also the fiber bundles themselves become categorified, and their gluing (or descent data) is given by nonabelian cocycles, generalizing group cohomology, where infinity-groupoids appear in the role both of the domain and the coefficient object. Such cocycles in particular represent higher principal bundles, gerbes, -- possibly equivariant, possibly with connection -- as well as the corresponding associated higher vector bundles. We show how the Hopf algebra known as the Drinfeld double arises in this context. This article is an expansion of a talk that the second author gave at the 5th Summer School of Modern Mathematical Physics in 2008.
Using representations of quivers of type A, we define an anticyclic cooperad in the category of triangulated categories, which is a categorification of the linear dual of the Diassociative operad.
We discussed quantum deformations of D=4 Lorentz and Poincare algebras. In the case of Poincare algebra it is shown that almost all classical r-matrices of S. Zakrzewski classification correspond to twisted deformations of Abelian and Jordanian types
The purpose of this paper is to describe an analogue of a construction of Costello in the context of finite-dimensional differential graded Frobenius algebras which produces closed forms on the decorated moduli space of Riemann surfaces. We show that
We equip Ellis and Brundans version of the odd categorified quantum group for sl(2) with a differential giving it the structure of a graded dg-2-supercategory. The presence of the super grading gives rise to two possible decategorifications of the as
We develop the rewriting theory for monoidal supercategories and 2-supercategories. This extends the theory of higher-dimensional rewriting established for (linear) 2-categories to the super setting, providing a suite of tools for constructing bases