ﻻ يوجد ملخص باللغة العربية
We discuss quantum deformations of Jordanian type for Lie superalgebras. These deformations are described by twisting functions with support from Borel subalgebras and they are multiparameter in the general case. The total twists are presented in explicit form for the Lie superalgebras sl(m|n) and osp(1|2n). We show also that the classical $r$-matrix for a light-cone deformation of D=4 super-Poincare algebra is of Jordanian type and a corresponding twist is given in explicit form.
We discussed quantum deformations of D=4 Lorentz and Poincare algebras. In the case of Poincare algebra it is shown that almost all classical r-matrices of S. Zakrzewski classification correspond to twisted deformations of Abelian and Jordanian types
Given formal differential operators $F_i$ on polynomial algebra in several variables $x_1,...,x_n$, we discuss finding expressions $K_l$ determined by the equation $exp(sum_i x_i F_i)(exp(sum_j q_j x_j)) = exp(sum_l K_l x_l)$ and their applications.
We discussed twisted quantum deformations of D=4 Lorentz and Poincare algebras. In the case of Poincare algebra it is shown that almost all classical r-matrices of S.Zakrzewski classification can be presented as a sum of subordinated r-matrices of Ab
We consider a superextension of the extended Jordanian twist, describing nonstandard quantization of anti-de-Sitter ($AdS$) superalgebra $osp(1|4)$ in the form of Hopf superalgebra. The super-Jordanian twisting function and corresponding basic coprod
We establish a Schur type duality between a coideal subalgebra of the quantum group of type A and the Hecke algebra of type B with 2 parameters. We identify the $imath$-canonical basis on the tensor product of the natural representation with Lusztigs