ﻻ يوجد ملخص باللغة العربية
In this paper, we prove some divisibility results for the Fourier coefficients of reduced modular forms of sign vectors. More precisely, we generalize a divisibility result of Siegel on constant terms when the weight is non-positive, which is related to the weight of Borcherds lifts when the weight is zero. By considering Hecke operators for the spaces of weakly holomorphic modular forms with sign vectors, and obtain divisibility results in an orthogonal direction on reduced modular forms.
Let $lambda$ be an integer, and $f(z)=sum_{ngg-infty} a(n)q^n$ be a weakly holomorphic modular form of weight $lambda+frac 12$ on $Gamma_0(4)$ with integral coefficients. Let $ellgeq 5$ be a prime. Assume that the constant term $a(0)$ is not zero mod
In this note, we generalize the isomorphisms to the case when the discriminant form is not necessarily induced from real quadratic fields. In particular, this general setting includes all the subspaces with epsilon-conditions, only two spacial cases
Let $M_k^!(Gamma_0^+(3))$ be the space of weakly holomorphic modular forms of weight $k$ for the Fricke group of level $3$. We introduce a natural basis for $M_k^!(Gamma_0^+(3))$ and prove that for almost all basis elements, all of their zeros in a f
Serre obtained the p-adic limit of the integral Fourier coefficient of modular forms on $SL_2(mathbb{Z})$ for $p=2,3,5,7$. In this paper, we extend the result of Serre to weakly holomorphic modular forms of half integral weight on $Gamma_{0}(4N)$ for
We establish an isomorphism between certain complex-valued and vector-valued modular form spaces of half-integral weight, generalizing the well-known isomorphism between modular forms for $Gamma_0(4)$ with Kohnens plus condition and modular forms for