ترغب بنشر مسار تعليمي؟ اضغط هنا

Risk, VaR, CVaR and their associated Portfolio Optimizations when Asset Returns have a Multivariate Student T Distribution

155   0   0.0 ( 0 )
 نشر من قبل William Shaw
 تاريخ النشر 2011
  مجال البحث مالية
والبحث باللغة English
 تأليف William T. Shaw




اسأل ChatGPT حول البحث

We show how to reduce the problem of computing VaR and CVaR with Student T return distributions to evaluation of analytical functions of the moments. This allows an analysis of the risk properties of systems to be carefully attributed between choices of risk function (e.g. VaR vs CVaR); choice of return distribution (power law tail vs Gaussian) and choice of event frequency, for risk assessment. We exploit this to provide a simple method for portfolio optimization when the asset returns follow a standard multivariate T distribution. This may be used as a semi-analytical verification tool for more general optimizers, and for practical assessment of the impact of fat tails on asset allocation for shorter time horizons.



قيم البحث

اقرأ أيضاً

We study a static portfolio optimization problem with two risk measures: a principle risk measure in the objective function and a secondary risk measure whose value is controlled in the constraints. This problem is of interest when it is necessary to consider the risk preferences of two parties, such as a portfolio manager and a regulator, at the same time. A special case of this problem where the risk measures are assumed to be coherent (positively homogeneous) is studied recently in a joint work of the author. The present paper extends the analysis to a more general setting by assuming that the two risk measures are only quasiconvex. First, we study the case where the principal risk measure is convex. We introduce a dual problem, show that there is zero duality gap between the portfolio optimization problem and the dual problem, and finally identify a condition under which the Lagrange multiplier associated to the dual problem at optimality gives an optimal portfolio. Next, we study the general case without the convexity assumption and show that an approximately optimal solution with prescribed optimality gap can be achieved by using the well-known bisection algorithm combined with a duality result that we prove.
A new approach in stochastic optimization via the use of stochastic gradient Langevin dynamics (SGLD) algorithms, which is a variant of stochastic gradient decent (SGD) methods, allows us to efficiently approximate global minimizers of possibly compl icated, high-dimensional landscapes. With this in mind, we extend here the non-asymptotic analysis of SGLD to the case of discontinuous stochastic gradients. We are thus able to provide theoretical guarantees for the algorithms convergence in (standard) Wasserstein distances for both convex and non-convex objective functions. We also provide explicit upper estimates of the expected excess risk associated with the approximation of global minimizers of these objective functions. All these findings allow us to devise and present a fully data-driven approach for the optimal allocation of weights for the minimization of CVaR of portfolio of assets with complete theoretical guarantees for its performance. Numerical results illustrate our main findings.
144 - William T. Shaw 2010
We develop the idea of using Monte Carlo sampling of random portfolios to solve portfolio investment problems. In this first paper we explore the need for more general optimization tools, and consider the means by which constrained random portfolios may be generated. A practical scheme for the long-only fully-invested problem is developed and tested for the classic QP application. The advantage of Monte Carlo methods is that they may be extended to risk functions that are more complicated functions of the return distribution, and that the underlying return distribution may be computed without the classical Gaussian limitations. The optimization of quadratic risk-return functions, VaR, CVaR, may be handled in a similar manner to variability ratios such as Sortino and Omega, or mathematical constructions such as expected utility and its behavioural finance extensions. Robustification is also possible. Grid computing technology is an excellent platform for the development of such computations due to the intrinsically parallel nature of the computation, coupled to the requirement to transmit only small packets of data over the grid. We give some examples deploying GridMathematica, in which various investor risk preferences are optimized with differing multivariate distributions. Good comparisons with established results in Mean-Variance and CVaR optimization are obtained when ``edge-vertex-biased sampling methods are employed to create random portfolios. We also give an application to Omega optimization.
Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are two risk measures which are widely used in the practice of risk management. This paper deals with the problem of computing both VaR and CVaR using stochastic approximation (with decreasing steps): we propose a first Robbins-Monro procedure based on Rockaffelar-Uryasevs identity for the CVaR. The convergence rate of this algorithm to its target satisfies a Gaussian Central Limit Theorem. As a second step, in order to speed up the initial procedure, we propose a recursive importance sampling (I.S.) procedure which induces a significant variance reduction of both VaR and CVaR procedures. This idea, which goes back to the seminal paper of B. Arouna, follows a new approach introduced by V. Lemaire and G. Pag`es. Finally, we consider a deterministic moving risk level to speed up the initialization phase of the algorithm. We prove that the convergence rate of the resulting procedure is ruled by a Central Limit Theorem with minimal variance and its efficiency is illustrated by considering several typical energy portfolios.
In this paper, we are concerned with the optimization of a dynamic investment portfolio when the securities which follow a multivariate Merton model with dependent jumps are periodically invested and proceed by approximating the Condition-Value-at-Ri sk (CVaR) by comonotonic bounds and maximize the expected terminal wealth. Numerical studies as well as applications of our results to real datasets are also provided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا