ﻻ يوجد ملخص باللغة العربية
We constrain the iron abundance in a sample of 33 low-ionization Galactic planetary nebulae (PNe) using [Fe III] lines and correcting for the contribution of higher ionization states with ionization correction factors (ICFs) that take into account uncertainties in the atomic data. We find very low iron abundances in all the objects, suggesting that more than 90% of their iron atoms are condensed onto dust grains. This number is based on the solar iron abundance and implies a lower limit on the dust-to-gas mass ratio, due solely to iron, of M_dust/M_gas>1.3x10^{-3} for our sample. The depletion factors of different PNe cover about two orders of magnitude, probably reflecting differences in the formation, growth, or destruction of their dust grains. However, we do not find any systematic difference between the gaseous iron abundances calculated for C-rich and O-rich PNe, suggesting similar iron depletion efficiencies in both environments. The iron abundances of our sample PNe are similar to those derived following the same procedure for a group of 10 Galactic H II regions. These high depletion factors argue for high depletion efficiencies of refractory elements onto dust grains both in molecular clouds and AGB stars, and low dust destruction efficiencies both in interstellar and circumstellar ionized gas.
We study the dust present in 56 Galactic planetary nebulae (PNe) through their iron depletion factors, their C/O abundance ratios (in 51 objects), and the dust features that appear in their infrared spectra (for 33 objects). Our sample objects have d
The iron depletion factors found in Galactic planetary nebulae (PNe) span over two orders of magnitude, suggesting that there are differences in the grain formation and destruction processes from object to object. We explore here the relation between
[Abridged] Investigations of neutron(n)-capture element nucleosynthesis and chemical evolution have largely been based on stellar spectroscopy. However, the recent detection of these elements in several planetary nebulae (PNe) indicates that nebular
We present new observations of O II recombination lines in ten bright planetary nebulae, along with spatially-resolved measurements of O II and [O III] in the Ring nebula NGC 6720, to study the discrepancy between abundances derived from O II recombi
The light element abundance pattern from many planetary nebulae (PNe) covering the upper 4 mag. of the [O III] luminosity function was observed with ESO VLT FORS1 multi-slit. Spectra of 51 PNe over the wavelength range 3500-7500 Angstrom were obtaine