ترغب بنشر مسار تعليمي؟ اضغط هنا

The Light Element Abundance Distribution in NGC 5128 from Planetary Nebulae

160   0   0.0 ( 0 )
 نشر من قبل Jeremy R. Walsh
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The light element abundance pattern from many planetary nebulae (PNe) covering the upper 4 mag. of the [O III] luminosity function was observed with ESO VLT FORS1 multi-slit. Spectra of 51 PNe over the wavelength range 3500-7500 Angstrom were obtained in three fields at 4, 8 and 17 kpc, for a distance of 3.8 Mpc. Emission line ratios are entirely typical of PN such as in the Milky Way. The temperature sensitive [O III]4363A line was weakly detected in 10 PNe, both [O II] and [O III] lines were detected in 30 PNe, and only the bright [O III]5007A line in 7 PN. Cloudy photoionization models were run to match the spectra by a spherical, constant density nebula ionized by a black body central star. He, N, O and Ne abundances with respect to H were determined and, for brighter PNe, S and Ar; central star luminosities and temperatures are also derived. For 40 PNe with Cloudy models, from the upper 2 mag. of the luminosity function, the most reliably estimated element, oxygen, has a mean 12+log(O/H) of 8.52. No obvious radial gradient is apparent in O/H over a range 2-20 kpc. Comparison of the PN abundances with the stellar population, from the spectra of the integrated starlight on the multi-slits and photometric studies, suggests [Fe/H]=-0.4 and [O/Fe]=0.25. The masses of the PN central stars in NGC 5128 from model tracks imply an epoch of formation more recent than for the minority young population from colour-magnitude studies. The PNe progenitors may belong to the young tail of a recent, minor, star formation episode or derive from other evolutionary channels.[Abridged]



قيم البحث

اقرأ أيضاً

The study of planetary nebulae (PNe) in the nearby post-merger elliptical galaxy NGC 5128 (Cen A) now has a history of nearly twenty years. As the nearest giant elliptical, it is a prime target for extragalactic PN studies. These studies have address ed many issues including the galaxys distance, dark matter content, halo structure, merger history, and stellar populations. We review the main PN studies that have been conducted in NGC 5128, and introduce a new study where we measure the [NII]/H-alpha ratio for 134 PNe. We find that there are no PNe in our sample that are obviously of Type I, supporting the idea that the last major star formation event in the galaxy halo occurred over 1-2 Gyr ago.
100 - J. R. Walsh 1999
Low dispersion spectra have been obtained of five planetary nebulae in the elliptical galaxy NGC 5128 (Centaurus-A) from the catalogue of Hui et al. (1993). The planetary nebulae (PN) cover a range of galactocentric radius from 7.9 to 17.7 arcmin (8 to 18Kpc). The spectra display typical emission lines of H I, He I, He II, [O III], [N II] and [S II] and appear very similar to high excitation planetary nebulae in the Galaxy. This implies that, from a stellar evolution viewpoint, there should be no peculiar effects introduced by considering the bright cut-off of the PN luminosity function for distance estimation. In particular the brightest PN detected in NGC 5128 is not spectroscopically unusual. One of the PN shows relatively strong He II and [N II] lines and the derived N/O ratio indicates that it may be a Type I nebula, considered to arise from a high mass progenitor star. Determinations of the oxygen abundance of the five PN shows a mean value 0.5 dex below solar. Given that NGC 5128 is an elliptical galaxy with a presumably metal rich stellar content, the low metallicities of the PN are unexpected, although a similar situation has been observed in the bulge of M 31.
159 - N. C. Sterling 2020
Nebular spectroscopy is a valuable tool for assessing the production of heavy elements by slow neutron(n)-capture nucleosynthesis (the s-process). Several transitions of n-capture elements have been identified in planetary nebulae (PNe) in the last f ew years, with the aid of sensitive high-resolution near-infrared spectrometers. Combined with optical spectroscopy, the newly discovered near-infrared lines enable more accurate abundance determinations than previously possible, and provide access to elements that had not previously been studied in PNe or their progenitors. Neutron-capture elements have also been detected in PNe in the Sagittarius Dwarf galaxy and in the Magellanic Clouds. In this brief review, I discuss developments in observational studies of s-process enrichments in PNe, with an emphasis on the last five years, and note some open questions and preliminary trends.
Imaging and spectroscopic observations of planetary nebulae (PNe) in the nearest large elliptical galaxy NGC 5128 (Centaurus A), were obtained to find more PNe and measure their radial velocities. NTT imaging was obtained in 15 fields in NGC 5128 ove r an area of about 1 square degree with EMMI using [O III] and off-band filters. Newly detected sources, combined with literature PNe, were used as input for VLT FLAMES multi-fibre spectroscopy in MEDUSA mode. Spectra of the 4600-5100A region were analysed and velocities measured based on emission lines of [O III]4959,5007A and often H-beta. The chief results are catalogues of 1118 PN candidates and 1267 spectroscopically confirmed PNe in NGC 5128. The catalogue of PN candidates contains 1060 PNe discovered with EMMI imaging and 58 from literature surveys. The spectroscopic PN catalogue has FLAMES radial velocity and emission line measurements for 1135 PNe, of which 486 are new. Another 132 PN radial velocities are available from the literature. For 629 PNe observed with FLAMES, H-beta was measured in addition to [O III]. Nine targets show double-lined or more complex profiles, and their possible origin is discussed. FLAMES spectra of 48 globular clusters were also targetted: 11 had emission lines detected (two with multiple components), but only 3 are PNe likely to belong to the host globular. The total of 1267 confirmed PNe in NGC 5128 with radial velocity measurements (1135 with small velocity errors) is the largest collection of individual kinematic probes in an early-type galaxy. This PN dataset, as well as the catalogue of PN candidates, are valuable resources for detailed investigation of the stellar population of NGC 5128. [Abridged]
NGC 6229 is a relatively massive outer halo globular cluster that is primarily known for exhibiting a peculiar bimodal horizontal branch morphology. Given the paucity of spectroscopic data on this cluster, we present a detailed chemical composition a nalysis of 11 red giant branch members based on high resolution (R ~ 38,000), high S/N (> 100) spectra obtained with the MMT-Hectochelle instrument. We find the cluster to have a mean heliocentric radial velocity of -138.1$_{-1.0}^{+1.0}$ km s$^{rm -1}$, a small dispersion of 3.8$_{-0.7}^{+1.0}$ km s$^{rm -1}$, and a relatively low (M/L$_{rm V}$)$_{rm odot}$ = 0.82$_{-0.28}^{+0.49}$. The cluster is moderately metal-poor with <[Fe/H]> = -1.13 dex and a modest dispersion of 0.06 dex. However, 18% (2/11) of the stars in our sample have strongly enhanced [La,Nd/Fe] ratios that are correlated with a small (~0.05 dex) increase in [Fe/H]. NGC 6229 shares several chemical signatures with M 75, NGC 1851, and the intermediate metallicity populations of omega Cen, which lead us to conclude that NGC 6229 is a lower mass iron-complex cluster. The light elements exhibit the classical (anti-)correlations that extend up to Si, but the cluster possesses a large gap in the O-Na plane that separates first and second generation stars. NGC 6229 also has unusually low [Na,Al/Fe] abundances that are consistent with an accretion origin. A comparison with M 54 and other Sagittarius clusters suggests that NGC 6229 could also be the remnant core of a former dwarf spheroidal galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا