ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-charge separation in strongly interacting finite ladder rings

133   0   0.0 ( 0 )
 نشر من قبل Julian Rincon
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the conductance through Aharonov-Bohm finite ladder rings with strongly interacting electrons, modelled by the prototypical t-J model. For a wide range of parameters we observe characteristic dips in the conductance as a function of magnetic flux, predicted so far only in chains which are a signature of spin and charge separation. These results open the possibility of observing this peculiar many-body phenomenon in anisotropic ladder systems and in real nanoscopic devices.



قيم البحث

اقرأ أيضاً

110 - Julian Rincon , A. A. Aligia , 2008
We calculate the conductance through rings with few sites $L$ described by the $t-J$ model, threaded by a magnetic flux $Phi$ and weakly coupled to conducting leads at two arbitrary sites. The model can describe a circular array of quantum dots with large charging energy $U$ in comparison with the nearest-neighbor hopping $t$. We determine analytically the particular values of $Phi$ for which a depression of the transmittance is expected as a consequence of spin-charge separation. We show numerically that the equilibrium conductance at zero temperature is depressed at those particular values of $Phi $ for most systems, in particular at half filling, which might be easier to realize experimentally.
76 - Z.Y. Weng , D.N. Sheng , 2001
In the presence of nonlocal phase shift effects, a quasiparticle can remain topologically stable even in a spin-charge separation state due to the confinement effect introduced by the phase shifts at finite doping. True deconfinement only happens in the zero-doping limit where a bare hole can lose its integrity and decay into holon and spinon elementary excitations. The Fermi surface structure is completely different in these two cases, from a large band-structure-like one to four Fermi points in one-hole case, and we argue that the so-called underdoped regime actually corresponds to a situation in between.
125 - Z.Y. Weng , D.N. Sheng , 1999
Quasiparticle properties are explored in an effective theory of the $t-J$ model which includes two important components: spin-charge separation and unrenormalizable phase shift. We show that the phase shift effect indeed causes the system to be a non -Fermi liquid as conjectured by Anderson on a general ground. But this phase shift also drastically changes a conventional perception of quasiparticles in a spin-charge separation state: an injected hole will remain {em stable} due to the confinement of spinon and holon by the phase shift field despite the background is a spinon-holon sea. True {em deconfinement} only happens in the {em zero-doping} limit where a bare hole will lose its integrity and decay into holon and spinon elementary excitations. The Fermi surface structure is completely different in these two cases, from a large band-structure-like one to four Fermi points in one-hole case, and we argue that the so-called underdoped regime actually corresponds to a situation in between, where the ``gap-like effect is amplified further by a microscopic phase separation at low temperature. Unique properties of the single-electron propagator in both normal and superconducting states are studied by using the equation of motion method. We also comment on some of influential ideas proposed in literature related to the Mott-Hubbard insulator and offer a unified view based on the present consistent theory.
We report on measurements of quantum many-body modes in ballistic wires and their dependence on Coulomb interactions, obtained from tunneling between two parallel wires in a GaAs/AlGaAs heterostructure while varying electron density. We observe two s pin modes and one charge mode of the coupled wires, and map the dispersion velocities of the modes down to a critical density, at which spontaneous localization is observed. Theoretical calculations of the charge velocity agree well with the data, although they also predict an additional charge mode that is not observed. The measured spin velocity is found to be smaller than theoretically predicted.
149 - Y. Jompol 2010
In a one-dimensional (1D) system of interacting electrons, excitations of spin and charge travel at different speeds, according to the theory of a Tomonaga-Luttinger Liquid (TLL) at low energies. However, the clear observation of this spin-charge sep aration is an ongoing challenge experimentally. We have fabricated an electrostatically-gated 1D system in which we observe spin-charge separation and also the predicted power-law suppression of tunnelling into the 1D system. The spin-charge separation persists even beyond the low-energy regime where the TLL approximation should hold. TLL effects should therefore also be important in similar, but shorter, electrostatically gated wires, where interaction effects are being studied extensively worldwide.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا