ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing spin-charge separation in a Tomonaga-Luttinger liquid

137   0   0.0 ( 0 )
 نشر من قبل Chris Ford
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Y. Jompol




اسأل ChatGPT حول البحث

In a one-dimensional (1D) system of interacting electrons, excitations of spin and charge travel at different speeds, according to the theory of a Tomonaga-Luttinger Liquid (TLL) at low energies. However, the clear observation of this spin-charge separation is an ongoing challenge experimentally. We have fabricated an electrostatically-gated 1D system in which we observe spin-charge separation and also the predicted power-law suppression of tunnelling into the 1D system. The spin-charge separation persists even beyond the low-energy regime where the TLL approximation should hold. TLL effects should therefore also be important in similar, but shorter, electrostatically gated wires, where interaction effects are being studied extensively worldwide.



قيم البحث

اقرأ أيضاً

We study the influence of spin on the quantum interference of interacting electrons in a single-channel disordered quantum wire within the framework of the Luttinger liquid (LL) model. The nature of the electron interference in a spinful LL is partic ularly nontrivial because the elementary bosonic excitations that carry charge and spin propagate with different velocities. We extend the functional bosonization approach to treat the fermionic and bosonic degrees of freedom in a disordered spinful LL on an equal footing. We analyze the effect of spin-charge separation at finite temperature both on the spectral properties of single-particle fermionic excitations and on the conductivity of a disordered quantum wire. We demonstrate that the notion of weak localization, related to the interference of multiple-scattered electron waves and their decoherence due to electron-electron scattering, remains applicable to the spin-charge separated system. The relevant dephasing length, governed by the interplay of electron-electron interaction and spin-charge separation, is found to be parametrically shorter than in a spinless LL. We calculate both the quantum (weak localization) and classical (memory effect) corrections to the conductivity of a disordered spinful LL. The classical correction is shown to dominate in the limit of high temperature.
We study both noncentrosymmetric and time-reversal breaking Weyl semimetal systems under a strong magnetic field with the Coulomb interaction. The three-dimensional bulk system is reduced to many mutually interacting quasi-one-dimensional wires. Each strongly correlated wire can be approached within the Tomonaga-Luttinger liquid formalism. Including impurity scatterings, we inspect the localization effect and the temperature dependence of the electrical resistivity. The effect of a large number of Weyl points in real materials is also discussed.
We present NMR measurements of a strong-leg spin-1/2 Heisenberg antiferromagnetic ladder compound (C7H10N)2CuBr4 under magnetic fields up to 15 T in the temperature range from 1.2 K down to 50 mK. From the splitting of NMR lines we determine the phas e boundary and the order parameter of the low-temperature (3-dimensional) long-range-ordered phase. In the Tomonaga-Luttinger regime above the ordered phase, NMR relaxation reflects characteristic power-law decay of spin correlation functions as 1/T1 T^(1/2K-1), which allows us to determine the interaction parameter K as a function of field. We find that field-dependent K varies within the 1<K<2 range which signifies attractive interaction between the spinless fermions in the Tomonaga-Luttinger liquid.
We demonstrate that quantum-critical spin dynamics can be probed in high magnetic fields using muon-spin relaxation ($mu^{+}$SR). Our model system is the strong-leg spin ladder bis(2,3-dimethylpyridinium) tetrabromocuprate (DIMPY). In the gapless Tom onaga-Luttinger liquid phase we observe finite-temperature scaling of the $mu^{+}$SR $1/T_1$ relaxation rate which allows us to determine the Luttinger parameter $K$. We discuss the benefits and limitations of local probes compared with inelastic neutron scattering.
In contrast to a free electron system, a Tomonaga-Luttinger (TL) liquid in a one dimensional (1D) electron system hosts charge and spin excitations as independent entities. When an electron wave packet is injected into a TL liquid, it transforms into wave packets carrying either charge or spin that propagate at different group velocities and move away from each other. This process, known as spin-charge separation, is the hallmark of TL physics. While the existence of these TL eigenmodes has been identified in momentum- or frequency-resolved measurements, their waveforms, which are a direct manifestation of 1D electron dynamics, have been long awaited to be measured. In this study, we present a time domain measurement for the spin-charge-separation process in an asymmetric chiral TL liquid comprising quantum Hall (QH) edge channels. We measure the waveforms of both charge and spin excitations by combining a spin filter with a time-resolved charge detector. Spatial separation of charge- and spin-wave packets over a distance exceeding 200 um was confirmed. In addition, we found that the 1D electron dynamics can be controlled by tuning the electric environment. These experimental results provide fundamental information about non-equilibrium phenomena in actual 1D electron systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا