ﻻ يوجد ملخص باللغة العربية
Quasiparticle properties are explored in an effective theory of the $t-J$ model which includes two important components: spin-charge separation and unrenormalizable phase shift. We show that the phase shift effect indeed causes the system to be a non-Fermi liquid as conjectured by Anderson on a general ground. But this phase shift also drastically changes a conventional perception of quasiparticles in a spin-charge separation state: an injected hole will remain {em stable} due to the confinement of spinon and holon by the phase shift field despite the background is a spinon-holon sea. True {em deconfinement} only happens in the {em zero-doping} limit where a bare hole will lose its integrity and decay into holon and spinon elementary excitations. The Fermi surface structure is completely different in these two cases, from a large band-structure-like one to four Fermi points in one-hole case, and we argue that the so-called underdoped regime actually corresponds to a situation in between, where the ``gap-like effect is amplified further by a microscopic phase separation at low temperature. Unique properties of the single-electron propagator in both normal and superconducting states are studied by using the equation of motion method. We also comment on some of influential ideas proposed in literature related to the Mott-Hubbard insulator and offer a unified view based on the present consistent theory.
We consider the repulsive Hubbard model in one dimension and show the different mechanisms present in the charge and spin separation phenomena for an electron, at half filling and bellow half filling. We also comment recent experimental results.
The motion of a single hole in a Mott antiferromagnet is investigated based on the t-J model. An exact expression of the energy spectrum is obtained, in which the irreparable phase string effect [Phys. Rev. Lett. 77, 5102 (1996)] is explicitly presen
The exact numerical diagonalization and thermodynamics in an ensemble of small Hubbard clusters in the ground state and finite temperatures reveal intriguing insights into the nascent charge and spin pairings, Bose condensation and ferromagnetism in
By using variational wave functions and quantum Monte Carlo techniques, we investigate the interplay between electron-electron and electron-phonon interactions in the two-dimensional Hubbard-Holstein model. Here, the ground-state phase diagram is tri
As an elementary particle the electron carries spin hbar/2 and charge e. When binding to the atomic nucleus it also acquires an angular momentum quantum number corresponding to the quantized atomic orbital it occupies (e.g., s, p or d). Even if elect