ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybrid exotic meson with J^{PC}=1^{-+} in AdS/QCD

124   0   0.0 ( 0 )
 نشر من قبل Youngman Kim
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the hybrid exotic meson with $J^{PC}=1^{-+}$ within the framework of an AdS/QCD model. Introducing a holographic field dual to the operator for hybrid exotic meson, we obtain the eigen-value equation for its mass. Fixing all free parameters by QCD observables such as the $rho$-meson mass, we predict the masses of the hybrid exotic meson. The results turn out to be $1476 mathrm{MeV}$ for the ground state, and $2611 mathrm{MeV}$ for the first excited one. Being compared with the existing experimental data for the $pi_1(1400)$, which is known to be $m_{pi_1} = 1351pm30 mathrm{MeV}$, the present result seems to be qualitative in agreement with it. We also predict the decay constant of $pi_1$(1400): $F_{pi_1}= 10.6$ MeV.



قيم البحث

اقرأ أيضاً

We explore conventional meson-hybrid mixing in $J^{PC}=1^{++}$ heavy quarkonium using QCD Laplace sum-rules. We calculate the cross-correlator between a heavy conventional meson current and heavy hybrid current within the operator product expansion, including terms proportional to the four- and six-dimensional gluon condensates and the six-dimensional quark condensate. Using experimentally determined hadron masses, we construct models of the $1^{++}$ charmonium and bottomonium mass spectra. These models are used to investigate which resonances couple to both currents and thus exhibit conventional meson-hybrid mixing. In the charmonium sector, we find almost no conventional meson-hybrid mixing in the $chi_{c1}(1P)$, minimal mixing in the $X(3872)$, and significant mixing in both the $X(4140)$ and $X(4274)$. In the bottomonium sector, we find minimal conventional meson-hybrid mixing in the $chi_{b1}(1P)$ and significant mixing in both the $chi_{b1}(2P)$ and $chi_{b1}(3P)$.
Mesons with quantum numbers $J^{PC}=1^{-+}$ cannot be represented as simple quark-antiquark pairs. We explore hybrid configurations in the light meson sector comprising a quark, an antiquark and an excited gluon, studying the properties of such state s in a phenomenological model inspired by the gauge/gravity correspondence. The computed mass, compared to the experimental mass of the $1^{-+}$ candidates $pi_1(1400)$, $pi_1(1600)$ and $pi_1(2015)$, favous $pi_1(1400)$ as the lightest hybrid state. An interesting result concerns the stability of hybrid mesons at finite temperature: they disappear from the spectral function (i.e. they melt) at a lower temperature with respect to other states, light vector and scalar mesons, and scalar glueballs.
QCD Laplace sum-rules are used to calculate axial vector $(J^{PC}=1^{++})$ charmonium and bottomonium hybrid masses. Previous sum-rule studies of axial vector heavy quark hybrids did not include the dimension-six gluon condensate, which has been show n to be important in the $1^{--}$ and $0^{-+}$ channels. An updated analysis of axial vector heavy quark hybrids is performed, including the effects of the dimension-six gluon condensate, yielding mass predictions of 5.13 GeV for hybrid charmonium and 11.32 GeV for hybrid bottomonium. The charmonium hybrid mass prediction disfavours a hybrid interpretation of the X(3872), if it has $J^{PC}=1^{++}$, in agreement with the findings of other theoretical approaches. It is noted that QCD sum-rule results for the $1^{--}$, $0^{-+}$ and $1^{++}$ channels are in qualitative agreement with the charmonium hybrid multiplet structure observed in recent lattice calculations.
We use the Laplace/Borel sum rules (LSR) and the finite energy/local duality sum rules (FESR) to investigate the non-strange $udbar ubar d$ and hidden-strange $usbar ubar s$ tetraquark states with exotic quantum numbers $J^{PC}=0^{+-}$ . We systemati cally construct all eight possible tetraquark currents in this channel without covariant derivative operator. Our analyses show that the $udbar ubar d$ systems have good behaviour of sum rule stability and expansion series convergence in both the LSR and FESR analyses, while the LSR for the $usbar ubar s$ states do not associate with convergent OPE series in the stability regions and only the FESR can provide valid results. We give the mass predictions $1.43pm0.09$ GeV and $1.54pm0.12$ GeV for the $udbar ubar d$ and $usbar ubar s$ tetraquark states, respectively. Our results indicate that the $0^{+-}$ isovector $usbar ubar s$ tetraquark may only decay via weak interaction mechanism, e.g. $X_{usbar{u}bar{s}}to Kpipi$, since its strong decays are forbidden by kinematics and the symmetry constraints on the exotic quantum numbers. It is predicted to be very narrow, if it does exist. The $0^{+-}$ isoscalar $usbar ubar s$ tetraquark is also predicted to be not very wide because its dominate decay mode $X_{usbar{u}bar{s}}tophipipi$ is in $P$-wave.
Axial vector $(J^{PC}=1^{++})$ charmonium and bottomonium hybrid masses are determined via QCD Laplace sum-rules. Previous sum-rule studies in this channel did not incorporate the dimension-six gluon condensate, which has been shown to be important f or $1^{--}$ and $0^{-+}$ heavy quark hybrids. An updated analysis of axial vector charmonium and bottomonium hybrids is presented, including the effects of the dimension-six gluon condensate. The axial vector charmonium and bottomonium hybrid masses are predicted to be 5.13 GeV and 11.32 GeV, respectively. We discuss the implications of this result for the charmonium-like XYZ states and the charmonium hybrid multiplet structure observed in recent lattice calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا