ﻻ يوجد ملخص باللغة العربية
The Proportional-Integral-Derivative Controller is widely used in industries for process control applications. Fractional-order PID controllers are known to outperform their integer-order counterparts. In this paper, we propose a new technique of fractional-order PID controller synthesis based on peak overshoot and rise-time specifications. Our approach is to construct an objective function, the optimization of which yields a possible solution to the design problem. This objective function is optimized using two popular bio-inspired stochastic search algorithms, namely Particle Swarm Optimization and Differential Evolution. With the help of a suitable example, the superiority of the designed fractional-order PID controller to an integer-order PID controller is affirmed and a comparative study of the efficacy of the two above algorithms in solving the optimization problem is also presented.
This contribution deals with identification of fractional-order dynamical systems. System identification, which refers to estimation of process parameters, is a necessity in control theory. Real processes are usually of fractional order as opposed to
This contribution deals with identification of fractional-order dynamical systems. System identification, which refers to estimation of process parameters, is a necessity in control theory. Real processes are usually of fractional order as opposed to
Of the many definitions for fractional order differintegral, the Grunwald-Letnikov definition is arguably the most important one. The necessity of this definition for the description and analysis of fractional order systems cannot be overstated. Unfo
In this paper, we consider a stochastic distributed nonconvex optimization problem with the cost function being distributed over $n$ agents having access only to zeroth-order (ZO) information of the cost. This problem has various machine learning app
To further understand the underlying mechanism of various reinforcement learning (RL) algorithms and also to better use the optimization theory to make further progress in RL, many researchers begin to revisit the linear-quadratic regulator (LQR) pro