ﻻ يوجد ملخص باللغة العربية
Of the many definitions for fractional order differintegral, the Grunwald-Letnikov definition is arguably the most important one. The necessity of this definition for the description and analysis of fractional order systems cannot be overstated. Unfortunately, the Fractional Order Differential Equation (FODE) describing such a systems, in its original form, highly sensitive to the effects of random noise components inevitable in a natural environment. Thus direct application of the definition in a real-life problem can yield erroneous results. In this article, we perform an in-depth mathematical analysis the Grunwald-Letnikov definition in depth and, as far as we know, we are the first to do so. Based on our analysis, we present a transformation scheme which will allow us to accurately analyze generalized fractional order systems in presence of significant quantities of random errors. Finally, by a simple experiment, we demonstrate the high degree of robustness to noise offered by the said transformation and thus validate our scheme.
We give stability and consistency results for higher order Grunwald-type formulae used in the approximation of solutions to fractional-in-space partial differential equations. We use a new Carlson-type inequality for periodic Fourier multipliers to g
In this paper, we propose third-order semi-discretized schemes in space based on the tempered weighted and shifted Grunwald difference (tempered-WSGD) operators for the tempered fractional diffusion equation. We also show stability and convergence an
The Proportional-Integral-Derivative Controller is widely used in industries for process control applications. Fractional-order PID controllers are known to outperform their integer-order counterparts. In this paper, we propose a new technique of fra
In this paper, we establish concentration inequalities both for functionals of the whole solution on an interval [0, T ] of an additive SDE driven by a fractional Brownian motion with Hurst parameter H $in$ (0, 1) and for functionals of discrete-time
Stochastic differential equations and stochastic dynamics are good models to describe stochastic phenomena in real world. In this paper, we study N independent stochastic processes Xi(t) with real entries and the processes are determined by the stoch