ﻻ يوجد ملخص باللغة العربية
This contribution deals with identification of fractional-order dynamical systems. System identification, which refers to estimation of process parameters, is a necessity in control theory. Real processes are usually of fractional order as opposed to the ideal integral order models. A simple and elegant scheme of estimating the parameters for such a fractional order process is proposed. This method employs fractional calculus theory to find equations relating the parameters that are to be estimated, and then estimates the process parameters after solving the simultaneous equations. The data used for the calculations are intentionally corrupted to simulate real-life conditions. Results show that the proposed scheme offers a very high degree of accuracy even for erroneous data.
This contribution deals with identification of fractional-order dynamical systems. System identification, which refers to estimation of process parameters, is a necessity in control theory. Real processes are usually of fractional order as opposed to
System identification refers to estimation of process parameters and is a necessity in control theory. Physical systems usually have varying parameters. For such processes, accurate identification is particularly important. Online identification sche
The modulating functions method has been used for the identification of linear and nonlinear systems. In this paper, we generalize this method to the on-line identification of fractional order systems based on the Riemann-Liouville fractional derivat
We propose a candidate, which we call the fractional Galois ideal after Snaiths fractional ideal, for replacing the classical Stickelberger ideal associated to an abelian extension of number fields. The Stickelberger ideal can be seen as gathering in
The Proportional-Integral-Derivative Controller is widely used in industries for process control applications. Fractional-order PID controllers are known to outperform their integer-order counterparts. In this paper, we propose a new technique of fra