ﻻ يوجد ملخص باللغة العربية
We present a detailed description of the dynamics of the magnetic modes in the recently discovered superconducting pnictides using reliable self-consistent spin-wave theory and series expansion. Contrary to linear spin-wave theory, no gapless mode occurs at the Neel wave vector. We discuss the scenario that the static magnetic moment is strongly reduced by magnetic fluctuations arising from the vicinity to a quantum phase transition. Smoking gun experiments to verify this scenario are proposed and possible results are predicted. Intriguingly in this scenario, the structural transition at finite temperature would be driven by an Ising transition in directional degrees of freedom.
The concept of mass-generation via the Higgs mechanism was strongly inspired by earlier works on the Meissner-Ochsenfeld effect in superconductors. In quantum field theory, the excitations of longitudinal components of the Higgs field manifest as mas
A nematic transition preceding a long-range spin density wave antiferromagnetic phase is a common feature of many Fe based superconductors. However, in the FeSe system with a nematic transition at $T_{rm s} approx$ 90 K no evidence for long-range sta
In cuprates, the strong correlations in proximity to the antiferromagnetic Mott insulating state give rise to an array of unconventional phenomena beyond high temperature superconductivity. Developing a complete description of the ground state evolut
The ground state of the quantum rotor model in two dimensions with random phase frustration is investigated. Extensive Monte Carlo simulations are performed on the corresponding (2+1)-dimensional classical model under the entropic sampling scheme. Fo
We consider the role of potential scatterers in the nematic phase of Fe-based superconductors above the transition temperature to the (pi,0) magnetic state but below the orthorhombic structural transition. The anisotropic spin fluctuations in this re