ترغب بنشر مسار تعليمي؟ اضغط هنا

Close proximity of FeSe to a magnetic quantum critical point as revealed by high-resolution $mu$SR measurements

94   0   0.0 ( 0 )
 نشر من قبل Vadim Grinenko A
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A nematic transition preceding a long-range spin density wave antiferromagnetic phase is a common feature of many Fe based superconductors. However, in the FeSe system with a nematic transition at $T_{rm s} approx$ 90 K no evidence for long-range static magnetism down to very low temperature was found. The lack of magnetism is a challenge for the theoretical description of FeSe. Here, we investigated high-quality single crystals of FeSe using high-field (up to 9.5 Tesla) muon spin rotation ($mu$SR) measurements. The $mu$SR Knight shift and the bulk susceptibility linearly scale at high temperatures but deviate from this behavior around $T^{*} sim 10$ K, where the Knight shift exhibits a kink. This behavior hints to an essential change of the electronic and/or magnetic properties crossing the region near $T^{*}$. In the temperature range $T_{rm s} gtrsim T gtrsim T^{*}$ the muon spin depolarization rate follows a critical behavior $Lambda propto T^{-0.4}$. The observed non-Fermi liquid behavior with a cutoff at $T^{*}$ indicates that FeSe is in the vicinity to a antiferromagnetic quantum critical point. Our analysis is suggestive for $T^{*}$ triggered by the Lifshitz transition.



قيم البحث

اقرأ أيضاً

Superconductivity is significantly enhanced in monolayer FeSe grown on SrTiO3, but not for multilayer films, in which large strength of nematicity develops. However, the link between the high-transition temperature superconductivity in monolayer and the correlation related nematicity in multilayer FeSe films is not well understood. Here, we use low-temperature scanning tunneling microscopy to study few-layer FeSe thin films grown by molecular beam epitaxy. We observe an incommensurate long-range smectic phase, which solely appears in bilayer FeSe films. The smectic order still locally exists and gradually fades away with increasing film thickness, while it suddenly vanishes in monolayer FeSe, indicative of an abrupt smectic phase transition. Surface alkali-metal doping can suppress the smectic phase and induce high-Tc superconductivity in bilayer FeSe. Our observations provide evidence that the monolayer FeSe is in close proximity to the smectic phase, and its superconductivity is likely enhanced by this electronic instability as well.
We report high resolution ARPES measurements of detwinned FeSe single crystals. The application of a mechanical strain is used to promote the volume fraction of one of the orthorhombic domains in the sample, which we estimate to be 80$%$ detwinned. W hile the full structure of the electron pockets consisting of two crossed ellipses may be observed in the tetragonal phase at temperatures above 90~K, we find that remarkably, only one peanut-shaped electron pocket oriented along the longer $a$ axis contributes to the ARPES measurement at low temperatures in the nematic phase, with the expected pocket along $b$ being not observed. Thus the low temperature Fermi surface of FeSe as experimentally determined by ARPES consists of one elliptical hole pocket and one orthogonally-oriented peanut-shaped electron pocket. Our measurements clarify the long-standing controversies over the interpretation of ARPES measurements of FeSe.
161 - A.S. Sefat , D.J. Singh , R. Jin 2008
We report synthesis and single crystal measurements of magnetic, transport and thermal properties of single crystalline BaCo$_2$As$_2$ as well as first principles calculations of the electronic structure and magnetic behavior. These results show that BaCo$_2$As$_2$ is a highly renormalized paramagnet in proximity to a quantum critical point, presumably of ferromagnetic character and that BaFeNiAs$_2$ behaves similarly. These results are discussed in relation to the properties of Ba(Fe,Co)$_2$As$_2$ and Ba(Fe,Ni)$_2$As$_2$, which are superconducting for low Co and Ni concentrations.
Resistivity and Hall effect measurements of EuFe$_2$As$_2$ up to 3.2,GPa indicate no divergence of quasiparticle effective mass at the pressure $P_mathrm{c}$ where the magnetic and structural transition disappears. This is corroborated by analysis of the temperature ($T$) dependence of the upper critical field. $T$-linear resistivity is observed at pressures slightly above $P_mathrm{c}$. The scattering rates for both electrons and holes are shown to be approximately $T$-linear. When a field is applied, a $T^2$ dependence is recovered, indicating that the origin of the $T$-linear dependence is spin fluctuations.
131 - S. Chibani , D. Farina , P. Massat 2020
We report the evolution of nematic fluctuations in FeSe$_{1-x}$S$_x$ single crystals as a function of Sulfur content $x$ across the nematic quantum critical point (QCP) $x_csim$ 0.17 via Raman scattering. The Raman spectra in the $B_{1g}$ nematic cha nnel consist of two components, but only the low energy one displays clear fingerprints of critical behavior and is attributed to itinerant carriers. Curie-Weiss analysis of the associated nematic susceptibility indicates a substantial effect of nemato-elastic coupling which shifts the location of the nematic QCP. We argue that this lattice-induced shift likely explains the absence of any enhancement of the superconducting transition temperature at the QCP. The presence of two components in the nematic fluctuations spectrum is attributed to the dual aspect of electronic degrees of freedom in Hunds metals, with both itinerant carriers and local moments contributing to the nematic susceptibility.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا