ﻻ يوجد ملخص باللغة العربية
In cuprates, the strong correlations in proximity to the antiferromagnetic Mott insulating state give rise to an array of unconventional phenomena beyond high temperature superconductivity. Developing a complete description of the ground state evolution is crucial to decoding the complex phase diagram. Here we use the structure of broken translational symmetry, namely $d$-form factor charge modulations in (Bi,Pb)$_2$(Sr,La)$_2$CuO$_{6+delta}$, as a probe of the ground state reorganization that occurs at the transition from truncated Fermi arcs to a large Fermi surface. We use real space imaging of nanoscale electronic inhomogeneity as a tool to access a range of dopings within each sample, and we definitively validate the spectral gap $Delta$ as a proxy for local hole doping. From the $Delta$-dependence of the charge modulation wavevector, we discover a commensurate to incommensurate transition that is coincident with the Fermi surface transition from arcs to large hole pocket, demonstrating the qualitatively distinct nature of the electronic correlations governing the two sides of this quantum phase transition. Furthermore, the doping dependence of the incommensurate wavevector on the overdoped side is at odds with a simple Fermi surface driven instability.
Although charge density wave (CDW) correlations appear to be a ubiquitous feature of the superconducting cuprates, their disparate properties suggest a crucial role for coupling or pinning of the CDW to lattice deformations and disorder. While diffra
We report on superconducting(SC) characteristics for oxygen-reduced Cu-based five-layered high-temperature superconductor (Cu,C)Ba2Ca4Cu5Oy(Cu-1245(OPT)), which includes five-fold outer planes (OP) and four-fold inner planes (IP).As a result of the r
Recent studies establish that the cuprate pseudogap phase is susceptible at low temperatures to forming not only a $d$-symmetry superconducting (SC) state, but also a $d$-symmetry form factor (dFF) density wave (DW) state. The concurrent emergence of
The normal state of cuprates is dominated by the strange metal phase that, near optimal doping, shows a linear temperature dependence of the resistivity persisting down to the lowest $T$, when superconductivity is suppressed. For underdoped cuprates
Cuprate materials hosting high-temperature superconductivity (HTS) also exhibit various forms of charge and/or spin ordering whose significance is not fully understood. To date, static charge-density waves (CDWs) have been detected by diffraction pro