ترغب بنشر مسار تعليمي؟ اضغط هنا

Counting cocircuits and convex two-colourings is #P-complete

112   0   0.0 ( 0 )
 نشر من قبل Steven Noble
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that the problem of counting the number of colourings of the vertices of a graph with at most two colours, such that the colour classes induce connected subgraphs is #P-complete. We also show that the closely related problem of counting the number of cocircuits of a graph is #P-complete.



قيم البحث

اقرأ أيضاً

131 - Richard Lang , Maya Stein 2015
We show that for any $2$-local colouring of the edges of the balanced complete bipartite graph $K_{n,n}$, its vertices can be covered with at most~$3$ disjoint monochromatic paths. And, we can cover almost all vertices of any complete or balanced com plete bipartite $r$-locally coloured graph with $O(r^2)$ disjoint monochromatic cycles. We also determine the $2$-local bipartite Ramsey number of a path almost exactly: Every $2$-local colouring of the edges of $K_{n,n}$ contains a monochromatic path on $n$ vertices.
Rikudo is a number-placement puzzle, where the player is asked to complete a Hamiltonian path on a hexagonal grid, given some clues (numbers already placed and edges of the path). We prove that the game is complete for NP, even if the puzzle has no h ole. When all odd numbers are placed it is in P, whereas it is still NP-hard when all numbers of the form $3k+1$ are placed.
Exactly 20 years ago at MFCS, Demaine posed the open problem whether the game of Dots & Boxes is PSPACE-complete. Dots & Boxes has been studied extensively, with for instance a chapter in Berlekamp et al. Winning Ways for Your Mathematical Plays, a w hole book on the game The Dots and Boxes Game: Sophisticated Childs Play by Berlekamp, and numerous articles in the Games of No Chance series. While known to be NP-hard, the question of its complexity remained open. We resolve this question, proving that the game is PSPACE-complete by a reduction from a game played on propositional formulas.
Neuromorphic computing is a non-von Neumann computing paradigm that performs computation by emulating the human brain. Neuromorphic systems are extremely energy-efficient and known to consume thousands of times less power than CPUs and GPUs. They hav e the potential to drive critical use cases such as autonomous vehicles, edge computing and internet of things in the future. For this reason, they are sought to be an indispensable part of the future computing landscape. Neuromorphic systems are mainly used for spike-based machine learning applications, although there are some non-machine learning applications in graph theory, differential equations, and spike-based simulations. These applications suggest that neuromorphic computing might be capable of general-purpose computing. However, general-purpose computability of neuromorphic computing has not been established yet. In this work, we prove that neuromorphic computing is Turing-complete and therefore capable of general-purpose computing. Specifically, we present a model of neuromorphic computing, with just two neuron parameters (threshold and leak), and two synaptic parameters (weight and delay). We devise neuromorphic circuits for computing all the {mu}-recursive functions (i.e., constant, successor and projection functions) and all the {mu}-recursive operators (i.e., composition, primitive recursion and minimization operators). Given that the {mu}-recursive functions and operators are precisely the ones that can be computed using a Turing machine, this work establishes the Turing-completeness of neuromorphic computing.
176 - David Gosset , Daniel Nagaj 2013
Quantum satisfiability is a constraint satisfaction problem that generalizes classical boolean satisfiability. In the quantum k-SAT problem, each constraint is specified by a k-local projector and is satisfied by any state in its nullspace. Bravyi sh owed that quantum 2-SAT can be solved efficiently on a classical computer and that quantum k-SAT with k greater than or equal to 4 is QMA1-complete. Quantum 3-SAT was known to be contained in QMA1, but its computational hardness was unknown until now. We prove that quantum 3-SAT is QMA1-hard, and therefore complete for this complexity class.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا